PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 9.2 phần bài tập bổ sung trang 95 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) vuông tại \(A,\) đường cao \(AH.\) Gọi \(I,\, K\) theo thứ tự là trung điểm của \(AB,\, AC.\) Tính số đo góc \(IHK.\)

Phương pháp giải - Xem chi tiết

Tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông: Trong tam giác vuông đường trung tuyến tuyến ứng với cạnh huyền bằng nửa cạnh ấy.

Lời giải chi tiết

 

\(∆ AHB\) vuông tại \(H\) có \(HI\) là đường trung tuyến ứng với cạnh huyền \(AB\)

\(⇒ HI = IA = \dfrac{1}{2}AB\) (tính chất tam giác vuông)

\(⇒ ∆ IAH\) cân tại \(I\)

\( \Rightarrow \widehat {IAH} = \widehat {IHA}\) (1)

\(∆ AHC\) vuông tại \(H\) có \(HK\) là đường trung tuyến ứng với cạnh huyền \(AC\)

\(⇒ HK = KA = \dfrac{1}{2}AC\) (tính chất tam giác vuông)

\(⇒ ∆ KAH\) cân tại \(K\) \( \Rightarrow \widehat {KAH} = \widehat {KHA}\) (2)

\(\widehat {IHK} = \widehat {IHA} + \widehat {KHA}\) (3)

Từ (1), (2) và (3) suy ra: \(\widehat {IHK} = \widehat {IAH} + \widehat {KAH}\) \(= \widehat {IAK} = \widehat {BAC} = {90^0}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved