Toán 7 tập 2 - Chân trời sáng tạo

Giải Bài 9 trang 84 SGK Toán 7 tập 2 - Chân trời sáng tạo

Đề bài

Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M. Từ B kẻ BH vuông góc với đường thẳng CM (H ∈ CM). Trên tia đối của tia HC lấy điểm E sao cho HE = HM.

a) Chứng minh rằng tam giác MBE cân.

b) Chứng minh rằng \(\widehat {EBH} = \widehat {ACM}\)

c) Chứng minh rằng \(EB \bot BC\)

 

 

Phương pháp giải - Xem chi tiết

a)Ta chứng minh \(\Delta \)BME có 2 cạnh bên hoặc 2 góc đáy bằng nhau thông qua việc chứng minh 2 tam giác EHB và MHB bằng nhau.

b)Ta chứng minh \(\widehat {EBH} = \widehat {ACM}\)do cùng = \(\widehat {MBH}\)

c)Ta chứng minh\(\widehat {EBH} + \widehat {BCE} = {90^o}\)

 

 

Lời giải chi tiết

a)Xét \(\Delta \)BHE và \(\Delta \)BHM có :

BH là cạnh chung

EH = HM (do M đối xứng E qua H)

\(\widehat {BHE} = \widehat {BHM} = {90^o}\)

\( \Rightarrow \)\(\Delta \)BHE = \(\Delta \)BHM (c-g-c)

\( \Rightarrow \)BM = BE (cạnh tương ứng)

và \(\widehat {EBH} = \widehat {MBH}\)(góc tương ứng) (1)

\( \Rightarrow \)\(\Delta \)BEM cân tại B (2 cạnh bên bằng nhau)

b)Xét \(\Delta \)BHM vuông tại H \( \Rightarrow \widehat {BMH} + \widehat {MBH} = {90^o}\)

Xét \(\Delta \)AMC vuông tại A \( \Rightarrow \widehat {AMC} + \widehat {MCA} = {90^o}\)

Mà \(\widehat {HMB} = \widehat {AMC}\)(2 góc đối đỉnh)

\( \Rightarrow \widehat {MCA} = \widehat {MBH} = {90^o} - \widehat {AMC} = {90^o} - \widehat {HMB}\)(2)

Từ (1) và (2) \( \Rightarrow \widehat {EBH} = \widehat {ACM}\)

c)Vì \(\widehat {BCM} = \widehat {ACM}\) (do CM là phân giác góc C)

\( \Rightarrow \widehat {EBH} = \widehat {BCM}\)(cùng bằng \(\widehat {AMC}\)) (3)

Xét \(\Delta \)EHB vuông tại H có \(\widehat {EBH} + \widehat {BEH} = {90^o}\)(4)

Từ (3) và (4) \( \Rightarrow \widehat {BCM} + \widehat {BEH} = {90^o}\)

\( \Rightarrow \widehat {EBC} = {90^o} \Rightarrow EB \bot BC\) 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved