PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

Bài 9 trang 62 SBT toán 9 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG câu a
LG câu b

Một hình  chữ nhật có kích thước là \(25cm\) và \(40cm\). Người ta tăng mỗi kích thước của hình chữ nhật thêm \(x\) cm. Gọi \(S\) và \(P\) thứ tự là diện tích và chu vi của hình chữ nhật mới tính theo \(x\). 

Lựa chọn câu hỏi để xem giải nhanh hơn
LG câu a
LG câu b

LG câu a

LG câu a

Hỏi các đại lượng \(S\) và \(P\) có phải là hàm số bậc nhất của \(x\) không ? Vì sao ?

Phương pháp giải:

Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\), trong đó \(a,b\) là các số cho trước và \(a \ne 0\).

Lời giải chi tiết:

Sau khi tăng kích thước của mỗi chiều, ta được hình chữ nhật \(AB’C’D’\) có chiều dài \(AB’=\left( {40 + x} \right)\) cm, chiều rộng  \(AD'=\left( {25 + x} \right)\) cm.

Diện tích hình chữ nhật mới :

\(S = \left( {40 + x} \right)\left( {25 + x} \right)\)\( =1000+40x+25x+x^2\)\(= 1000 + 65x + {x^2}\)

S không phải là hàm số bậc nhất đối với \(x\) vì có bậc của biến số \(x\) là bậc hai.

Chu vi hình chữ nhật mới:

\(P = 2.\left[ {\left( {40 + x} \right) + \left( {25 + x} \right)} \right]\)\( =2(2x+65)= 4x + 130\)

P là hàm số bậc nhất đối với x có hệ số \(a = 4\), hệ số \(b = 130.\)

 

LG câu b

LG câu b

Tính các giá trị tương ứng của \(P\) khi \(x\) nhận các giá trị ( tính theo đơn vị cm) sau:

0;   1;   1,5;  2,5;  3,5.

Phương pháp giải:

Tính \(f({x_0})\) bằng cách thay \(x = {x_0}\) vào \(f(x)\).

Lời giải chi tiết:

Các giá trị tương ứng của \(P\) là:

\(x\)

0

1

1,5

2,5

3,5

\(P=4x+130\)

130

134

136

140

144

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved