Đề bài
Cho hai tập hợp \(A = \left\{ {2k + 1\left| {k \in \mathbb{Z}} \right.} \right\}\) và \(B = \left\{ {6l + 3\left| {l \in \mathbb{Z}} \right.} \right\}\). Chứng minh rằng \(B \subset A\)
Phương pháp giải - Xem chi tiết
Chứng minh mọi phần tử thuộc B đều thuộc A
Lời giải chi tiết
Ta có \(6l + 3 = 3\left( {2l + 1} \right)\)
Mặt khác k và l đều là số nguyên, suy ra mọi phần tử của tập hợp B đều nằm trong tập hợp A
Suy ra tập hợp \(B = \left\{ {6l + 3\left| {l \in \mathbb{Z}} \right.} \right\} = \left\{ {3\left( {l + 1} \right)\left| {l \in \mathbb{Z}} \right.} \right\}\)là bội của \(\left( {2k + 1} \right)\) khi \(k = l\)
Suy ra \(B \subset A\) (đpcm)
Chủ đề 1: Nền kinh tế và các chủ thể của nền kinh tế
Chương 3. Hàm số bậc hai và đồ thị
Đăm Săn chiến thắng Mtao Mxây
Unit 3: On screen
Hello!
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10