1. Nội dung câu hỏi
Chứng minh rằng:
a) \({\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\).
b) \({\sin ^6}x + {\cos ^6}x = 1 - 3{\sin ^2}x{\cos ^2}x\).
2. Phương pháp giải
a) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = {\sin ^2}x\), \(B = {\cos ^2}x\)
Sử dụng công thức \({\sin ^2}x + {\cos ^2}x = 1\).
b) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + {B^3} + 3AB\left( {A + B} \right)\) với \(A = {\sin ^2}x\), \(B = {\cos ^2}x\); Sử dụng công thức \({\sin ^2}x + {\cos ^2}x = 1\).
3. Lời giải chi tiết
a) Ta có: \({\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} = {\left( {{{\sin }^2}x} \right)^2} + {\left( {{{\cos }^2}x} \right)^2} + 2{\sin ^2}x{\cos ^2}x\)
\( = {\sin ^4}x + {\cos ^4}x + 2{\sin ^2}x{\cos ^2}x\)
Do \({\sin ^2}x + {\cos ^2}x = 1\), ta suy ra
\({1^2} = {\sin ^4}x + {\cos ^4}x + 2{\sin ^2}x{\cos ^2}x \Rightarrow {\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\)
Bài toán được chứng minh.
b) Ta có: \({\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} = {\left( {{{\sin }^2}x} \right)^3} + {\left( {{{\cos }^2}x} \right)^3} + 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\)
\( = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\)
Do \({\sin ^2}x + {\cos ^2}x = 1\), ta suy ra
\(1 = {\sin ^6}x + {\cos ^6}x + 3{\sin ^2}x{\cos ^2}x \Rightarrow {\sin ^6}x + {\cos ^6}x = 1 - 3{\sin ^2}x{\cos ^2}x\)
Bài toán được chứng minh.
Chủ đề 3: Kĩ thuật đá bóng
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 11
Chuyên đề 1: Tập nghiên cứu và viết báo cáo về một vấn đề văn học trung đại Việt Nam
Chủ đề 3: Đại cương về hóa học hữu cơ
Unit 5: Global warming
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11