1. Nội dung câu hỏi
Tìm tập xác định của các hàm số sau:
a) \(y = \frac{{{2^x} - 3}}{{{2^x} + 3}};\)
b) \(y = \sqrt {{3^x} - 1} ;\)
c) \(y = \frac{{{{\log }_2}x}}{{3 - {{\log }_2}x}};\)
d) \(y = \frac{1}{{\sqrt {{{\log }_{0,2}}x + 2} }}.\)
2. Phương pháp giải
- Tập xác định của hàm số mũ \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) là \(\mathbb{R}.\)
- Tập xác định của hàm số lôgarit \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) là \(\left( {0; + \infty } \right).\)
3. Lời giải chi tiết
a) Hàm số \(y = \frac{{{2^x} - 3}}{{{2^x} + 3}}\) có tập xác định là \(\mathbb{R}.\)
b) Điều kiện: \({3^x} - 1 \ge 0 \Leftrightarrow {3^x} \ge 1 \Leftrightarrow x \ge 3.\)
Vậy hàm số \(y = \sqrt {{3^x} - 1} \) có tập xác định là \(\left[ {3; + \infty } \right).\)
c) Điều kiện: \(\left\{ \begin{array}{l}x > 0\\{\log _2}x \ne 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x \ne 8\end{array} \right.\)
Vậy hàm số \(y = \frac{{{{\log }_2}x}}{{3 - {{\log }_2}x}}\) có tập xác định là \(\left( {0; + \infty } \right)\backslash \left\{ 8 \right\}.\)
d) Điều kiện: \(\left\{ \begin{array}{l}x > 0\\{\log _{0,2}}x \ne - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x \ne 25\end{array} \right.\)
Vậy hàm số \(y = \frac{1}{{\sqrt {{{\log }_{0,2}}x + 2} }}\) có tập xác định là \(\left( {0; + \infty } \right)\backslash \left\{ {25} \right\}.\)
Chương II. Công nghệ giống vật nuôi
Unit 14: Recreation - Sự giải trí
Unit 7: World Population - Dân số thế giới
Unit 6: Social issues
Bài 5. Kiến thức phổ thông về phòng không nhân dân
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11