PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 83 trang 90 SBT toán 8 tập 1

Đề bài

Cho hình bình hành \(ABCD.\) Gọi \(E,\) \(F\) theo thứ tự là trung điểm của \(AB,\) \(CD.\) Gọi \(M\) là giao điểm của \(AF\) và \(DE,\) \(N\) là giao điểm của \(BF\) và \(CE.\) Chứng minh rằng :

\(a)\) \(EMFN\) là hình bình hành.

\(b)\) Các đường thẳng \(AC,\) \(EF,\) \(MN\) đồng quy.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Trong hình bình hành, các cạnh đối bằng nhau.

+) Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

+) Trong hình bình hành, hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Lời giải chi tiết

 

Vì ABCD là hình bình hành nên \(AB//CD\) và \(AB=CD\) (tính chất)

Ta có: \(AE = EB = \dfrac{{AB}}{2}\) (vì E là trung điểm của AB)

\(DF= CF = \dfrac{{DC}}{2}\) (vì F là trung điểm của CD)

Mà \(AB=CD\) (cmt)

Suy ra \(AE=EB=DF=FC\) 

Xét tứ giác \(AECF,\) có:

\(AE = CF\) (cmt)

\(AE // CF\) (do \(AB // CD\;)\) 

Suy ra tứ giác \(AECF\) là hình bình hành ( vì có một cặp cạnh đối diện song song và bằng nhau)

\(⇒ AF // CE\) hay \(EN // FM \;\;(1)\)

Xét tứ giác \(BFDE,\) có:

\(BE = DF\) (cmt)

\(BE // DF\) (do \(AB // CD\))

Suy ra tứ giác \(BFDE\) là hình bình hành (vì có cặp cạnh đối song song và bằng nhau)

\(⇒ BF // DE\) hay \(EM // FN \;\;(2)\)

Từ \((1)\) và \((2)\) suy ra tứ giác \(EMFN\) là hình bình hành (theo định nghĩa)

\(b)\) Gọi \(O\) là giao điểm của \(AC\) và \(EF\)

Tứ giác \(AECF\) là hình bình hành \(⇒ OE = OF\)

Tứ giác \(EMFN\) là hình bình hành nên hai đường chéo cắt nhau tại trung điểm mỗi đường.

Suy ra: \(MN\) đi qua trung điểm \(O\) của \(EF\)

Vậy \(AC, EF, MN \) đồng quy tại \(O.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved