1. Nội dung câu hỏi
Cho \(\cot x = - 3\), \(\frac{\pi }{2} < x < \pi \). Tính \(\sin x\), \(\cos x\), \(\tan x\).
2. Phương pháp giải
Sử dụng công thức \(\tan x = \frac{1}{{\cot x}}\) để tính \(\tan x\).
Sử dụng công thức \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\) và điều kiện \(\frac{\pi }{2} < x < \pi \) để tính \(\sin x\).
Sử dụng công thức \(\cot x = \frac{{\cos x}}{{\sin x}}\) để tính \(\cos x\) theo \(\sin x\) và \(\cot x\).
3. Lời giải chi tiết
Ta có \(\tan x = \frac{1}{{\cot x}} = 1:\left( { - 3} \right) = - \frac{1}{3}\).
Do \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}} \Rightarrow {\sin ^2}x = \frac{1}{{1 + {{\cot }^2}x}} = \frac{1}{{1 + {{\left( { - 3} \right)}^2}}} = \frac{1}{{10}} \Rightarrow \sin x = \pm \frac{{\sqrt {10} }}{{10}}\)
Vì \(\frac{\pi }{2} < x < \pi \Rightarrow \sin x > 0 \Rightarrow \sin x = \frac{{\sqrt {10} }}{{10}}\).
Vì \(\cot x = \frac{{\cos x}}{{\sin x}} \Rightarrow \cos x = \cot x.\sin x = - 3.\frac{{\sqrt {10} }}{{10}} = - \frac{{3\sqrt {10} }}{{10}}\).
Chủ đề 2: Chủ nghĩa xã hội từ năm 1917 đến nay
Chủ đề 3: Quá trình giành độc lập dân tộc của các quốc gia Đông Nam Á
Unit 5: Technology
Unit 1: Generations
Bài 10. Kĩ thuật sử dụng lựu đạn
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11