PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 78 trang 114 SBT toán 9 tập 2

Đề bài

Cho tam giác \(AHB\) có \(\widehat H = 90^\circ ,\widehat A = 30^\circ \) và \(BH = 4cm.\) Tia phân giác của góc \(B\) cắt \(AH\) tại \(O.\) Vẽ đường tròn \((O; OH)\) và đường tròn \((O; OA).\)

\(a)\) Chứng minh đường tròn \((O; OH)\) tiếp xúc với cạnh \(AB.\)

\(b)\) Tính diện tích hình vành khăn nằm giữa hai đường tròn trên.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Tính chất tia phân giác của một góc: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.

+) Trong tam giác vuông, bình phương mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với \(\tan\) góc đối.

+) Trong tam giác vuông, bình phương mỗi cạnh góc vuông bằng cạnh huyền nhân với \(\cos\) góc kề.

+) Diện tích \(S\) của một hình tròn bán kính \(R\) được tính theo công thức: \(S=\pi.R^2\).

Lời giải chi tiết

 

\(a)\) Kẻ \(OK \bot AB\) tại \(K\) 

Vì \(BO\) là đường phân giác của \(\widehat B\) (gt)

\( \Rightarrow OK = OH\) (tính chất đường phân giác)

Suy ra: \(OK\) cũng là bán kính của đường tròn \((O;OH)\)

Vậy đường tròn \((O; OH)\) tiếp xúc với \(AB\) tại \(K.\) 

\(b)\) \(\Delta AHB\) có \(\widehat H = {90^0}\); \(\widehat A = {30^0}\)

Suy ra: \(\widehat B = {60^0} \Rightarrow \widehat {ABO} =\displaystyle {1 \over 2}\widehat B = {30^0}\)

Suy ra: \(∆OAB\) cân tại \(O\) nên \(OB = OA\)

Vậy \(B \in (O; OA)\)

\(∆BHO\) có \(\widehat H = {90^0}\); \(\widehat {OBH} = {30^0}\)

\(OH = BH.\tan {30^0} \)\(=\displaystyle  4.{{\sqrt 3 } \over 3} = {{4\sqrt 3 } \over 3}\;\;(cm)\)

\(OB = \displaystyle {{BH} \over {\cos \widehat {OBH}}} \)\(= \displaystyle {4 \over {\cos {{30}^0}}} = {4 \over \displaystyle {{{\sqrt 3 } \over 2}}} = {{8\sqrt 3 } \over 3}\) \((cm)\)

Diện tích đường tròn nhỏ: \(S_1=\displaystyle \pi {\left( {{{4\sqrt 3 } \over 3}} \right)^2} = {{16\pi } \over 3}\)  \((cm^2)\)

Diện tích đường tròn lớn: \({S_2} = \displaystyle \pi {\left( {{{8\sqrt 3 } \over 3}} \right)^2} = {{64\pi } \over 3}\) \((cm^2)\)

Diện tích hình vành khăn:

\(S={S_2} - {S_1} = \displaystyle {{64\pi } \over 3} - {{16\pi } \over 3} \)\(=\displaystyle  {{48\pi } \over 3} = 16\pi \) \((cm^2)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved