PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 77 trang 114 SBT toán 9 tập 2

Đề bài

Tính diện tích phần gạch sọc trên hình sau (theo kích thước đã cho trên hình)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong tam giác vuông, bình phương cạnh góc vuông bằng cạnh huyền nhân với \(\sin\) góc đối hoặc \(\cos\) góc kề.

+) Diện tích hình thang bằng nửa tổng hai đáy nhân với chiều cao.

+) Diện tích hình quạt tròn bán kính \(R,\) cung \(n^\circ\) được tính theo công thức: \(S=\dfrac{\pi R^2n}{360}.\) 

Lời giải chi tiết

 

Diện tích phần gạch sọc là hiệu giữa diện tích hình thang \(ABCD\) và diện tích hình quạt tròn có góc ở tâm \(30^0\) của đường tròn bán kính bằng a.

Từ \(D\) kẻ \(DH \bot BC\), suy ra \(ADHB\) là hình chữ nhật. 

Trong tam giác vuông \(HDC\) có \(\widehat {DHC} = {90^0}\)

\(DH = DC.\sin \widehat{C} = a.\sin {30^0} = \displaystyle{a \over 2}\)

\(CH = DC.\cos\widehat C = a.\cos{30^0} =\displaystyle {{a\sqrt 3 } \over 2}\)

\(BH = BC - HC = \displaystyle a - {{a\sqrt 3 } \over 2} \)\(= \displaystyle{{a\left( {2 - \sqrt 3 } \right)} \over 2}\)

\( \Rightarrow AD =BH= \displaystyle{{a\left( {2 - \sqrt 3 } \right)} \over 2}\) (do \(ADHB\) là hình chữ nhật) 

Diện tích của hình thang \(ABCD\) bằng:

\(\displaystyle{{AD + BC} \over 2}.DH \)\(=\displaystyle{{\displaystyle{{a\left( {2 - \sqrt 3 } \right)} \over 2} + a} \over 2}.{a \over 2}\)

\( = \displaystyle {{{a^2}\left( {4 - \sqrt 3 } \right)} \over 8}\)

Diện tích hình quạt tròn bằng: \(\displaystyle{{\pi .{a^2}.30} \over {360}} = {{\pi {a^2}} \over {12}}\)

Diện tích phần gạch sọc:

\(S = \displaystyle{{{a^2}\left( {4 - \sqrt 3 } \right)} \over 8} - {{\pi a} \over {12}}\)

\( = \displaystyle{{3{a^2}\left( {4 - \sqrt 3 } \right) - 2\pi {a^2}} \over {24}}\)

\( = \displaystyle{{{a^2}} \over {24}}\left( {12 - 3\sqrt 3  - 2\pi } \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved