SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Trả lời câu hỏi 7.48 - Mục câu hỏi trắc nghiệm trang 42

1. Nội dung câu hỏi

Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh bằng a. Khoảng cách từ điểm A đến đường thẳng BB’ bằng.

A. \(\frac{{a\sqrt 7 }}{2}\).

B. \(\frac{{a\sqrt {14} }}{4}\).

C. \(\frac{{a\sqrt 7 }}{4}\).

D. \(\frac{{a\sqrt {14} }}{2}\),


2. Phương pháp giải

Bước 1: Xác định khoảng cách từ điểm A đến đường thẳng BB'.

Bước 2: Tính khoảng cách từ A đến đường thẳng BB'.

3. Lời giải chi tiết 

 

Gọi \(M\) là trung điểm \(BC\)

\(B'C \cap BC' = K\)

\(H\) là trung điểm \(KC\)

Do tứ giác \(BCC'B'\) là hình vuông suy ra \(B'C \bot BC';HM \bot B'C\,\,(1)\)

Dễ thấy \(AM \bot \left( {BCC'B'} \right) \Rightarrow AM \bot B'C{\kern 1pt} {\kern 1pt} \,\,\,(2)\)

Từ \(\left( 1 \right);\left( 2 \right) \Rightarrow \left( {AMH} \right) \bot B'C \Rightarrow AH \bot B'C\)

Từ đó suy ra khoảng cách từ điểm  đến đường thẳng \(B'C\) bằng \(AH\)

Ta có \(AM = \frac{{a\sqrt 3 }}{2};HM = \frac{{BK}}{2} = \frac{{{\rm{a}}\sqrt 2 }}{4}\)

Xét tam giác \(AMH\) vuông tại \(M\) ta có \(AH = \sqrt {A{M^2} + H{M^2}}  = \frac{{a\sqrt {14} }}{4}\)

Vậy, khoảng cách từ điểm  đến đường thẳng \(B'C\) bằng \(\frac{{a\sqrt {14} }}{4}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved