1. Nội dung câu hỏi
Cho hình chóp \(S.ABCD\)có tất cả các cạnh đều bằng \(a\), gọi \(O\)là giao điểm của \(AC\) và \(BD\). Khoảng cách giữa hai đường thẳng \(AB\) và \(SD\) bằng
A. \(\frac{{a\sqrt 6 }}{3}\).
B. \(\frac{{a\sqrt 3 }}{2}\).
C. .\(\frac{{a\sqrt 6 }}{3}\).
D. \(\frac{{a\sqrt 6 }}{2}\).
2. Phương pháp giải
Gọi \(M,N\) lần lượt là trung điểm của các cạnh\(AB,CD\); \(H\) là hình chiếu vuông góc của \(O\) trên \(SN.\)
Vì \(AB{\rm{//}}CD\) nên\(d\left( {AB,SD} \right) = d\left( {AB,(SCD)} \right) = d\left( {M,(SCD)} \right) = 2d\left( {O,(SCD)} \right)\)
Ta có \(\left\{ \begin{array}{l}CD \bot SO\\CD \bot ON\end{array} \right. \Rightarrow CD \bot (SON) \Rightarrow CD \bot OH\)
Khi đó \(\left\{ \begin{array}{l}CD \bot OH\\OH \bot SN\end{array} \right. \Rightarrow OH \bot (SCD) \Rightarrow d\left( {O;(SCD)} \right) = OH.\)
Tam giác \(SOD\) vuông tại \(O\) nên \(O{S^2} = S{D^2} - O{D^2}\)
Tam giác \(SON\) vuông tại \(O\) nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{N^2}}} + \frac{1}{{O{S^2}}} \Rightarrow OH\)
Vậy \(d\left( {AB,SD} \right) = 2OH\).
3. Lời giải chi tiết
Gọi \(M,N\) lần lượt là trung điểm của các cạnh\(AB,CD\); \(H\) là hình chiếu vuông góc của \(O\) trên \(SN.\)
Vì \(AB{\rm{//}}CD\) nên \(d\left( {AB,SD} \right) = d\left( {AB,(SCD)} \right) = d\left( {M,(SCD)} \right) = 2d\left( {O,(SCD)} \right)\)
Ta có \(\left\{ \begin{array}{l}CD \bot SO\\CD \bot ON\end{array} \right. \Rightarrow CD \bot (SON) \Rightarrow CD \bot OH\)
Khi đó \(\left\{ \begin{array}{l}CD \bot OH\\OH \bot SN\end{array} \right. \Rightarrow OH \bot (SCD) \Rightarrow d\left( {O;(SCD)} \right) = OH.\)
Tam giác \(SOD\) vuông tại \(O\) nên \(O{S^2} = S{D^2} - O{D^2} = {a^2} - {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = \frac{{{a^2}}}{2}\)
Tam giác \(SON\) vuông tại \(O\) nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{N^2}}} + \frac{1}{{O{S^2}}} = \frac{1}{{\frac{{{a^2}}}{4}}} + \frac{1}{{\frac{{{a^2}}}{2}}} = \frac{6}{{{a^2}}} \Rightarrow OH = \frac{a}{{\sqrt 6 }} = \frac{{a\sqrt 6 }}{6}\)
Vậy \(d\left( {AB,SD} \right) = 2OH = \frac{{a\sqrt 6 }}{3}\).
Chương 7. Hiđrocacbon thơm. Nguồn hiđrocacbon thiên nhiên. Hệ thống hóa về hiđrocacbon
Phần hai. CÔNG DÂN VỚI CÁC VẤN ĐỀ CHÍNH TRỊ XÃ HỘI
Chuyên đề 2: Chiến tranh và hòa bình trong thế kỉ XX
Chủ đề 1: Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Tổng hợp từ vựng lớp 11 (Vocabulary) - Tất cả các Unit SGK Tiếng Anh 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11