1. Nội dung câu hỏi
Cho tứ diện đều \(ABCD\)có cạnh bằng\(a\), côsin của góc giữa đường thẳng \(AB\) và mặt phẳng \(\left( {BCD} \right)\)bằng
A. \(\frac{1}{3}\).
B. \(\frac{{\sqrt 3 }}{3}\).
C. \(\frac{{\sqrt 3 }}{2}\).
D. \(\frac{1}{2}\).
2. Phương pháp giải
- Chóp có các cạnh bên bằng nhau có chân đường cao trùng với tâm đường tròn ngoại tiếp đáy.
- Góc giữa đường và mặt là góc giữa đường thẳng và hình chiếu của đường thẳng trên mặt phẳng.
- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông.
3. Lời giải chi tiết
Gọi \(M\)là trung điểmcủa \(CD,O\) là tâm đường tròn ngoại tiếp tam giác đều \(BCD\)⇒\(AO \bot (BCD)\)
Khi đó \(OB\)là hình chiếu vuông góc của \(AB\) lên \((BCD)\)
\( \Rightarrow (AB;(BCD)) = (AB;OB) = \widehat {ABO}\)
Tam giác \(BCD\) đều cạnh a nên \(BM = \frac{{a\sqrt 3 }}{2} \Rightarrow BO = \frac{{2BM}}{3} = \frac{{a\sqrt 3 }}{3}\).
Ta có \(AO \bot (BCD)\) nên\(AO \bot OB\), suy ra \(\Delta ABO\)vuông tại \(O\).
⇒\(cos\widehat {ABO} = \frac{{OB}}{{AB}} = \frac{{\sqrt 3 }}{3}\)
Vậy \(\cos (AB;(BCD)) = \frac{{\sqrt 3 }}{3}\).
Unit 8: Cities of the future
Chương 1. Sự điện li
Unit 4: ASEAN and Viet Nam
Chương 3. Sinh trưởng và phát triển ở sinh vật
Unit 4: The Body
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11