Đề bài
Cho hai điểm \(A\left( { - 1;0} \right)\) và \(B\left( { - 2;3} \right)\). Phương trình đường thẳng đi qua B và vuông góc với AB là:
A. \(x - 3y + 11 = 0\)
B. \(x - 3y + 1 = 0\)
C. \( - x - 3y + 7 = 0\)
D. \(3x + y + 3 = 0\)
Phương pháp giải - Xem chi tiết
Phương trình tổng quát đường thẳng đi qua \(M\left( {{x_1},{y_1}} \right)\) nhận \(\overrightarrow {{a_1}} = \left( {a;b} \right)\) là vector pháp tuyến là: \(a\left( {x - {x_1}} \right) + b\left( {y - {y_1}} \right) = 0\)
Lời giải chi tiết
Phương trình đường thẳng đi qua B vuông góc với AB có vector pháp tuyến \(\overrightarrow {AB} = \left( { - 1;3} \right)\) là \( - 1\left( {x + 2} \right) + 3\left( {y - 3} \right) = 0 \Rightarrow - x + 3y - 11 = 0 \Rightarrow x - 3y + 11 = 0\)
Chọn A.
Chương 11. Địa lí ngành công nghiệp
Chuyên đề 2. Sân khấu hóa tác phẩm văn học
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Toán lớp 10
Chủ đề 2. Lực và chuyển động
Chương 4. Hệ thức lượng trong tam giác
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10