SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 7.39 - Mục Bài tập trang 41

1. Nội dung câu hỏi

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\) và \(\widehat {BAC} = {60^ \circ }\), biết diện tích các tam giác \(ABC,SAB\) và \(SAC\) lần lượt là \(3\sqrt 3 ;9;12\). Tính thể tích khối chóp \(S.ABC\).


2. Phương pháp giải

Áp dụng công thức tính thể tích khối chóp: \({\rm{S}} = \frac{1}{3}{\rm{Bh}}\).

Trong đó: \({\rm{B}}\) là diện tích đa giác đáy

h là đường cao của hình chóp

Bước 1:

Đặt \(SA = a,AB = b,AC = c\).

Khi đó \({V_{S.ABC}} = \frac{1}{3} \cdot {S_{ABC}} \cdot SA = \frac{1}{3} \cdot \frac{1}{2} \cdot bc \cdot {\rm{sin}}{60^ \circ } \cdot a = \frac{{abc\sqrt 3 }}{{12}}\)

Bước 2:

Theo đề bài, ta có: \({S_{ABC}} = \frac{1}{2}bc \cdot {\rm{sin}}{60^ \circ } = 3\sqrt 3 \), suy ra \(bc\).

\({S_{SAB}} = \frac{{ab}}{2} = 9\), suy ra \(ab = \),

\({S_{SAC}} = \frac{{ac}}{2}\) suy ra \(ac\).

Nhân  \(ab.bc.ca = {\left( {abc} \right)^2} \Rightarrow abc \Rightarrow {V_{S.ABC}}\)

 

3. Lời giải chi tiết 

Đặt \(SA = a,AB = b,AC = c\).

 Khi đó \({V_{S.ABC}} = \frac{1}{3} \cdot {S_{ABC}} \cdot SA = \frac{1}{3} \cdot \frac{1}{2} \cdot bc \cdot {\rm{sin}}{60^ \circ } \cdot a = \frac{{abc\sqrt 3 }}{{12}}\)

Theo đề bài, ta có: \({S_{ABC}} = \frac{1}{2}bc \cdot {\rm{sin}}{60^ \circ } = 3\sqrt 3 \), suy ra \(bc = 12\).

\({S_{SAB}} = \frac{{ab}}{2} = 9\), suy ra \(ab = 18;{S_{SAC}} = \frac{{ac}}{2} = 12\), suy ra \(ac = 24\).

Do đó \({(abc)^2} = 12 \cdot 18 \cdot 24 = {72^2}\), hay \(abc = 72\).

 Vậy \({V_{S.ABC}} = 6\sqrt 3 \).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved