SBT TOÁN TẬP 2 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Giải bài 7.35 trang 46 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Một người kĩ sư thiết kế một đường hầm một chiều có mặt cắt là một nửa hành elip, chiều rộng của hầm là 12 m, khoảng cách từ điểm cao nhất của elip so với mặt đường là 3m. Người kĩ sư này muốn đưa ra cảnh báo cho các loại xe có thể đi qua hầm. Biết rằng những loại xe tải có chiều cao 2,8 m thì có chiều rộng không quá 3 m. Hỏi chiếc xe tải có chiều cho 2,8 m có thể đi qua hầm được không?

Phương pháp giải - Xem chi tiết

Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \)

Lời giải chi tiết

+ Phương trình chính tắc của \(\left( E \right)\) là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\). Do các điểm \(B\left( {0;3} \right)\) và \(A\left( {6;0} \right)\) thuộc \(\left( E \right)\) nên thay vào phương trình của \(\left( E \right)\) ta có \(b = 3,a = 6\)

\( \Rightarrow \frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\)

+ Với những xe tải có chiều cao 2,8 m, chiều rộng của xe tải là 3 m, tương ứng với \(x = 1,5\). Thay vào phương trình của elip để ta tìm ra độ co của \(y\) của điểm \(M\) (có hoành bộ bằng 1,5 thuộc \(\left( E \right)\)) so với trục \(Ox\):

\({y_M} = 3\sqrt {1 - \frac{{x_M^2}}{{16}}}  = 3\sqrt {1 - \frac{{1,{5^2}}}{{16}}}  = 2,905 > 2,8\)

\( \Rightarrow \) Ô tô tải có thể đi được qua hầm, tuy nhiên cần khuyến cáo các ô tô phải đi vào chính giữa hầm.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved