Đề bài
Một người kĩ sư thiết kế một đường hầm một chiều có mặt cắt là một nửa hành elip, chiều rộng của hầm là 12 m, khoảng cách từ điểm cao nhất của elip so với mặt đường là 3m. Người kĩ sư này muốn đưa ra cảnh báo cho các loại xe có thể đi qua hầm. Biết rằng những loại xe tải có chiều cao 2,8 m thì có chiều rộng không quá 3 m. Hỏi chiếc xe tải có chiều cho 2,8 m có thể đi qua hầm được không?
Phương pháp giải - Xem chi tiết
Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \)
Lời giải chi tiết
+ Phương trình chính tắc của \(\left( E \right)\) là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\). Do các điểm \(B\left( {0;3} \right)\) và \(A\left( {6;0} \right)\) thuộc \(\left( E \right)\) nên thay vào phương trình của \(\left( E \right)\) ta có \(b = 3,a = 6\)
\( \Rightarrow \frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\)
+ Với những xe tải có chiều cao 2,8 m, chiều rộng của xe tải là 3 m, tương ứng với \(x = 1,5\). Thay vào phương trình của elip để ta tìm ra độ co của \(y\) của điểm \(M\) (có hoành bộ bằng 1,5 thuộc \(\left( E \right)\)) so với trục \(Ox\):
\({y_M} = 3\sqrt {1 - \frac{{x_M^2}}{{16}}} = 3\sqrt {1 - \frac{{1,{5^2}}}{{16}}} = 2,905 > 2,8\)
\( \Rightarrow \) Ô tô tải có thể đi được qua hầm, tuy nhiên cần khuyến cáo các ô tô phải đi vào chính giữa hầm.
Chủ đề 7. Cộng đồng các dân tộc Việt Nam
Vocabulary Builder
Chủ đề 4: Chủ động, tự tin trong học tập và giao tiếp
Chương 11: Phát triển bền vững và tăng trưởng xanh
Đề thi giữa kì 1
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10