SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 7.34 - Mục Bài tập trang 41

1. Nội dung câu hỏi

Cho khối chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a\), góc giữa mặt phẳng \(\left( {SCD} \right)\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(60^\circ \). Tính theo \(a\) thể tích khối chóp \(S.ABCD\).


2. Phương pháp giải

Áp dụng công thức tính thể tích khối chóp: \(S = \frac{1}{3}Bh\).

Trong đó: \(B\) là diện tích đa giác đáy

\(h\)là đường cao của hình chóp

Bước 1: Xác định chiều cao \(SO\)

Bước 2: Tính diện tích đáy

Bước 3: Tính thể tích khối chóp \(V = \frac{1}{3}SO.{S_{ABCD}}\).

 

3. Lời giải chi tiết 

Gọi \(O\) là giao điểm của \(AC\) và \(BD\), ta có \(SO\) vuông góc với mặt đáy \(\left( {ABCD} \right)\). Kẻ \(OM\) vuông góc với \(CD\) tại \(M\) thì \(SM\) cũng vuông góc với \(CD\) nên góc giữa hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) bằng góc giữa hai đường thẳng \(SM\) và \(OM\), mà \(\left( {SM,OM} \right) = \widehat {SMO} = 60^\circ \).
Ta có: \(OM = \frac{a}{2};\)\(SO = OM \cdot {\rm{tan}}\widehat {SMO} = \frac{{a\sqrt 3 }}{4}\).
Vậy \({V_{S.ABCD}} = \frac{1}{3} \cdot {S_{ABCD}} \cdot SO = \frac{1}{3} \cdot {a^2} \cdot \frac{{a\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{{12}}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved