1. Nội dung câu hỏi
Cho hình lăng trụ đứng \(ABC \cdot A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\) và \(AB = AC = AA' = a\). Tính theo a khoảng cách:
a) Từ điểm \(A\) đến đường thẳng \(B'C'\).
b) Giữa hai đường thẳng \(BC\) và \(AB'\).
2. Phương pháp giải
a) Tính khoảng cách từ điểm \(A\) đến đường thẳng \(B'C'\).
Bước 1: Tìm hình chiếu của điểm trên đường thẳng \(B'C'\).
Kẻ \(AH\) vuông góc với \(B'C'\) tại \(H\) thì \(d\left( {A,B'C'} \right) = AH\).
Bước 2: Tính \(AH\)
b) Tính khoảng cách giữa hai đường thẳng \(BC\) và \(AB'\).
Bước 1: Dựng mặt phẳng qua đường thẳng \(AB'\) và song song với \(BC\) là \(\left( {AB'C'} \right)\)
Chuyển khoảng cách về chân đường vuông góc
\(d\left( {BC,AB'} \right) = d\left( {BC,\left( {AB'C'} \right)} \right) = d\left( {C,\left( {AB'C'} \right)} \right) = d\left( {C,\left( {AB'C'} \right)} \right) = d\left( {A',\left( {AB'C'} \right)} \right).\)
Bước 2: Tính \(d\left( {A',\left( {AB'C'} \right)} \right)\)
3. Lời giải chi tiết
a) Kẻ \(AH\) vuông góc với \(B'C'\) tại \(H\) thì \(d\left( {A,B'C'} \right) = AH\).
Ta có: \(AB' = AC' = B'C' = a\sqrt 2 \) nên \(AH = \frac{{a\sqrt 6 }}{2}\).
Vậy \(d\left( {A,B'C'} \right) = \frac{{a\sqrt 6 }}{2}\).
b) Vì \(BC//\left( {AB'C'} \right)\) nên \(d\left( {BC,AB'} \right) = d\left( {BC,\left( {AB'C'} \right)} \right) = d\left( {C,\left( {AB'C'} \right)} \right).\)
Mà \(CA'\) cắt \(AC'\) tại trung điểm của \(CA'\) nên \(d\left( {C,\left( {AB'C'} \right)} \right) = d\left( {A',\left( {AB'C'} \right)} \right)\)
Đặt \(d\left( {A',\left( {AB'C'} \right)} \right) = h\) thì \(\frac{1}{{{h^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{A'{B^{{\rm{'}}2}}}} + \frac{1}{{A'{C^{{\rm{'}}2}}}} = \frac{3}{{{a^2}}}\), suy ra \(h = \frac{{a\sqrt 3 }}{3}\).
Vậy \(d\left( {BC,AB'} \right) = \frac{{a\sqrt 3 }}{3}\).
Tải 10 đề kiểm tra 15 phút - Chương II - Hóa học 11
CHƯƠNG III. SINH TRƯỞNG VÀ PHÁT TRIỂN
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 11
Chuyên đề 3: Đọc, viết và giới thiệu về một tác giả văn học
Unit 2: The generation gap
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11