SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 7.29 - Mục Bài tập trang 38

1. Nội dung câu hỏi

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), góc \(ABC\) bằng \({60^ \circ }\), biết tam giác \(SBC\) đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Tính theo a khoảng cách:

a) Từ điểm \(S\) đến mặt phẳng \(\left( {ABC} \right)\).

b) Từ điểm \(B\) đến mặt phẳng \(\left( {SAC} \right)\).

c) Giữa hai đường thẳng \(AB\) và \(SC\).


2. Phương pháp giải

a) Tính khoảng cách từ điểm \(S\) đến mặt phẳng \(\left( {ABC} \right)\).

Bước 1: Kẻ \(SH\) vuông góc với \(BC\) tại \(H\)

Do \(\left( {SBC} \right) \bot \left( {ABC} \right) \Rightarrow SH \bot \left( {ABC} \right)\)

 \( \Rightarrow d\left( {S,\left( {ABC} \right)} \right) = SH\)

Bước 2: Tính \(SH\)

b) Tính khoảng cách từ điểm \(B\) đến mặt phẳng \(\left( {SAC} \right)\).

Bước 1: Tính khoảng cách từ \(H\) đến mặt phẳng \(\left( {SAC} \right)\).

Bước 2: Nhận xét \(H\) là trung điểm của \(BC\) nên \(d\left( {B,\left( {SAC} \right)} \right) = 2d\left( {H,\left( {SAC} \right)} \right)\)c) Tính khoảng cách giữa hai đường thẳng \(AB\) và \(SC\).

Bước 1: Dựng hình bình hành \(ABMC\), chứng minh được \(ABMC\) là hình chữ nhật.

Khi đó \(AB//\left( {SCM} \right)\) và mặt phẳng \(\left( {SMC} \right)\) chứa \(SC\) nên

\(d\left( {AB,SC} \right) = d\left( {AB,\left( {SCM} \right)} \right) = d\left( {B,\left( {SCM} \right)} \right) = 2d\left( {H,\left( {SCM} \right)} \right){\rm{.\;}}\)

Bước 2: Tính \(\left( {H,\left( {SCM} \right)} \right) \Rightarrow \)\(d\left( {AB,SC} \right) = d\left( {AB,\left( {SCM} \right)} \right) = 2d\left( {H,\left( {SCM} \right)} \right){\rm{.\;}}\)

 

3. Lời giải chi tiết

a) Kẻ \(SH\) vuông góc với \(BC\) tại \(H\) thì \(SH \bot \left( {ABC} \right)\), suy ra \(d\left( {S,\left( {ABC} \right)} \right) = SH = \frac{{a\sqrt 3 }}{2}\)

b) Kẻ HK vuông góc với \(AC\) tại \(K,HQ\) vuông góc với \(SK\) tại \(Q\) thì \(d\left( {H,\left( {SAC} \right)} \right) = HQ\).

Ta có: \(AB = \frac{a}{2},HK = \frac{a}{4}\) và tam giác \(SHK\) vuông tại \(H\), đường cao \(HQ\) nên \(HQ = \frac{{SH \cdot HK}}{{SK}} = \frac{{a\sqrt {39} }}{{26}}\). 

Lại có \(H\) là trung điểm của \(BC\) nên \(d\left( {B,\left( {SAC} \right)} \right) = 2d\left( {H,\left( {SAC} \right)} \right) = \frac{{a\sqrt {39} }}{{13}}\).

c) Dựng hình bình hành \(ABMC\), chứng minh được \(ABMC\) là hình chữ nhật.

Khi đó \(AB//\left( {SCM} \right)\) và mặt phẳng \(\left( {SMC} \right)\) chứa \(SC\) nên

\(d\left( {AB,SC} \right) = d\left( {AB,\left( {SCM} \right)} \right) = d\left( {B,\left( {SCM} \right)} \right) = 2d\left( {H,\left( {SCM} \right)} \right){\rm{.\;}}\)

Kẻ \(HN\) vuông góc với \(CM\) tại \(N,HE\) vuông góc với \(SN\) tại \(N\) thì \(HE \bot \left( {SCM} \right)\), suy ra \(d\left( {H,\left( {SCM} \right)} \right) = HE\).

Ta có: \(HN = \frac{{BM}}{2} = \frac{{a\sqrt 3 }}{4}\), tam giác SHN vuông tại \(H\), đường cao \(HE\) nên \(HE = \frac{{SH \cdot HN}}{{SN}} = \frac{{a\sqrt {15} }}{{10}}\).

Vậy \(d\left( {AB,SC} \right) = \frac{{a\sqrt {15} }}{5}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved