PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 70 trang 112 SBT toán 9 tập 2

Đề bài

Cho tam giác \(ABC\) nội tiếp đường tròn \((O; R)\) có \(\widehat C = {45^\circ}\).

\(a)\) Tính diện tích hình quạt tròn \(AOB\) (ứng với cung nhỏ \(AB\))

\(b)\) Tính diện tích hình viên phân \(AmB\) (ứng với cung nhỏ \(AB\))

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức: Diện tích hình quạt tròn bán kính \(R,\) cung \(n^\circ\) được tính theo công thức: \(S=\dfrac{\pi R^2n}{360}\).

Lời giải chi tiết

 

\(a)\) Xét đường tròn \((O)\) có \(\widehat C = {45^\circ }\)  \((gt)\) là góc nội tiếp chắn \(\overparen{AmB} \)

\( \Rightarrow  sđ \overparen{AmB}= 2.\widehat C\)\(=2.45^0= {90^\circ}\)

Diện tích hình quạt \(AOB\) là:

\(S =\displaystyle {{\pi {R^2}.90} \over {360}} =\displaystyle  {{\pi {R^2}} \over 4}\) (đơn vị diện tích)

\(b)\) \(\widehat {AOB} =  sđ \overparen{AmB} = {90^0}\)

\( \Rightarrow OA \bot OB\)

Diện tích tam giác \(OAB\) là: \(S =\displaystyle {1 \over 2}OA.OB = \displaystyle {{{R^2}} \over 2}\)

Diện tích hình viên phân \(AmB\) là:

\(S_{qAOB}-S_{AOB}=\displaystyle {{\pi {R^2}} \over 4} - {{{R^2}} \over 2}\)\( =\displaystyle  {{{R^2}\left( \displaystyle {\pi  - 2} \right)} \over 4}\) (đơn vị diện tích)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved