1. Nội dung câu hỏi
Cho hai dãy số \(\left( {{u_n}} \right)\), \(\left( {{v_n}} \right)\) với \({u_n} = 3 - \frac{4}{{n + 1}}\), \({v_n} = 8 - \frac{5}{{3{n^2} + 2}}\). Tính:
a) \(\lim {u_n}\), \(\lim {v_n}\)
b) \(\lim \left( {{u_n} + {v_n}} \right)\), \(\lim \left( {{u_n} - {v_n}} \right)\), \(\lim \left( {{u_n}.{v_n}} \right)\), \(\lim \frac{{{u_n}}}{{{v_n}}}\)
2. Phương pháp giải
Sử dụng tính chất về dãy số có giới hạn vô cực.
Sử dụng định lí về giới hạn hữu hạn: Nếu \(\lim {u_n} = a\), \(\lim {v_n} = b\) thì:
\(\lim \left( {{u_n} + {v_n}} \right) = a + b\), \(\lim \left( {{u_n} - {v_n}} \right) = a - b\), \(\lim \left( {{u_n}.{v_n}} \right) = ab\)
Trường hợp \({v_n} \ne 0\) và \(b \ne 0\), ta có \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\)
3. Lời giải chi tiết
a)
Ta có \(\lim 4 = 4\) và \(\lim \left( {n + 1} \right) = + \infty \), nên \(\lim \frac{4}{{n + 1}} = 0\).
Sử dụng định lí về giới hạn hữu hạn, ta có:
\(\lim {u_n} = \lim \left( {3 - \frac{4}{{n + 1}}} \right) = \lim 3 - \lim \frac{4}{{n + 1}} = 3 - 0 = 3\)
Chứng minh tương tự, ta cũng có:
\(\lim {v_n} = \lim \left( {8 - \frac{5}{{3{n^2} + 2}}} \right) = \lim 8 - \lim \frac{5}{{3{n^2} + 2}} = 8 - 0 = 8\)
b) Theo kết quả câu a, ta có \(\lim {u_n} = 3\), \(\lim {v_n} = 8 \ne 0\).
Sử dụng định lí về giới hạn hữu hạn, ta có:
\(\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = 3 + 8 = 11\)
\(\lim \left( {{u_n} - {v_n}} \right) = \lim {u_n} - \lim {v_n} = 3 - 8 = - 5\)
\(\lim \left( {{u_n}.{v_n}} \right) = \lim {u_n}.\lim {v_n} = 3.8 = 24\)
\(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\lim {u_n}}}{{\lim {v_n}}} = \frac{3}{8}\) (do \({v_n} \ne 0\) với \(\forall n \in {\mathbb{N}^*}\))
Chủ đề 1. Dao động
Chương 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
Ngóng gió đông - Nguyễn Đình Chiểu
SOẠN VĂN 11 TẬP 2
CHƯƠNG V: HIĐROCABON NO
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11