Giải bài 7 trang 19 SGK Toán 10 tập 1 – Cánh diều
Đề bài
Cho hai tập hợp: \(A = [0;3]\), \(B = (2; + \infty )\). Xác định \(A \cap B,A \cup B,\)\(A\,{\rm{\backslash }}\,B,B\,{\rm{\backslash }}\,A,\mathbb{R}\,{\rm{\backslash }}\,B.\)
Lời giải chi tiết
+) \(A \cap B = [0;3] \cap (2; + \infty ) = (2;3]\)
+) \(A \cup B = [0;3] \cup (2; + \infty ) = [0; + \infty )\)
+) \(A\,{\rm{\backslash }}\,B = [0;3]\,{\rm{\backslash }}\,(2; + \infty ) = [0;2]\)
+) \(B\,{\rm{\backslash }}\,A = (2; + \infty )\,{\rm{\backslash }}\,[0;3] = (3; + \infty )\)
+) \(\mathbb{R}\,{\rm{\backslash }}\,B = \mathbb{R}\,{\rm{\backslash }}\,(2; + \infty ) = ( - \infty ;2]\)
CHƯƠNG V. NĂNG LƯỢNG HÓA HỌC
Chủ đề 7. Cộng đồng các dân tộc Việt Nam
Chương 2. Trái Đất
Chương 4. Ba định luật Newwton. Một số lực trong thực tiễn
Đề thi giữa kì 2
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10