Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Cho đường trong \((O; R).\) Chia đường tròn này thành ba cung có số đo tỉ lệ với \(3, 4\) và \(5\) rồi tính diện tích các hình quạt tròn được tạo thành.
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Áp dụng tính chất dãy tỉ số bằng nhau: Từ dãy tỉ số bằng nhau \(\displaystyle {a \over b} =\displaystyle {c \over d} = \displaystyle {e \over f}\) ta suy ra: \( \displaystyle {a \over b} =\displaystyle {c \over d} = \displaystyle {e \over f}=\displaystyle {{a + c + e} \over {b + d + f}}.\)
+) Diện tích hình quạt tròn bán kính \(R,\) cung \(n^\circ\) được tính theo công thức: \(S=\dfrac{\pi R^2n}{360}\).
Lời giải chi tiết
Gọi số đo độ của \(3\) cung theo thứ tự là \(a, b, c\) \((0<a,b,c<360)\)
Ta có \(a + b + c = 360^\circ\)
Theo bài ra ta có:
\(\displaystyle {a \over 3} =\displaystyle {b \over 4} = \displaystyle {c \over 5}\)\( =\displaystyle {{a + b + c} \over {3 + 4 + 5}} = \displaystyle {{{{360}^\circ}} \over {12}} = {30^\circ}\)
\(a = 3. 30^\circ =90^\circ;\)
\( b = 4. 30^\circ =120^\circ;\)
\(c = 5. 30^\circ = 150^\circ\)
Diện tích các hình quạt tương ứng với cung \(90^\circ,120^\circ,150^\circ\) là \(S_1,S_2,S_3\)
\({S_1} = \displaystyle {{\pi {R^2}.90} \over {360}} = {{\pi {R^2}} \over 4}\)
\({S_2} = \displaystyle {{\pi {R^2}.120} \over {360}} = {{\pi {R^2}} \over 3}\)
\({S_3} = \displaystyle {{\pi {R^2}.150} \over {360}} = {{5\pi {R^2}} \over {12}}\)
Bài 7: Kế thừa và phát huy truyền thống tốt đẹp của dân tộc
Bài 11: Trách nhiệm của thanh niên trong sự nghiệp công nghiệp hoá, hiện đại hoá đất nước
CHƯƠNG 3. PHI KIM. SƠ LƯỢC VỀ BẢNG TUẦN HOÀN CÁC NGUYÊN TỐ HÓA HỌC
PHẦN HÌNH HỌC - TOÁN 9 TẬP 1
Bài 1