Câu hỏi 67 - Mục Bài tập trang 85

1. Nội dung câu hỏi

Một chiếc kệ bày hoa quả có ba tầng được thiết kế như Hình 59. Tầng đáy có đường kính \(AB\) là 32 cm. Tầng giữa có đường kính \(CD\) nhỏ hơn đường kính tầng đáy là 12 cm. Tính độ dài đường kính tầng trên cùng \(EF\), biết \(EF//AB\); \(D,C\) lần lượt là trung điểm của \(EA\) và \(FB\).

 

2. Phương pháp giải 

Tam giác \(A'B'C'\) gọi là đồng dạng với tam giác \(ABC\) nếu:

\(\widehat{A'}=\widehat{A},\widehat{B'}=\widehat{B},\widehat{C'}=\widehat{C}\) ; \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}\).

Kí hiệu là \(\Delta A'B'C'\backsim \Delta ABC\).

Tỉ số các cạnh tương ứng \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=k\) gọi là tỉ số đồng dạng.

 

3. Lời giải chi tiết

Tầng giữa có đường kính \(CD\) là: \(32-12=20\)cm.

Ta có: \(EF//AB;D,C\) lần lượt là trung điểm của \(EA\) và \(FB\)

\(=>DC//EF//AB\)

Xét hai tam giác \(EHD\) và \(EAB\) có \(DH//AB=>\Delta EHD\backsim \Delta EAB\)

$  =>\frac{DE}{AE}=\frac{DH}{AB}=\frac{1}{2} \\ =>DH=\frac{AB.DE}{AE}=\frac{32.1}{2}=16cm $

Độ dài \(HC=DC-DH=20-16=4\)cm.

Xét hai tam giác \(BHC\) và \(BEF\) có \(HC//EF=>\Delta BHC\backsim \Delta BEF\)

$ =>\frac{HC}{EF}=\frac{BC}{BF}=\frac{1}{2} \\=>EF=2.HC=2.4=8cm \\$

Vậy độ dài đường kính tầng trên cùng \(EF=8\)cm.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved