PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

Bài 67 trang 15 SBT toán 9 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG câu a
LG câu b

Áp dụng bất đẳng thức Cô-si cho hai số không âm, chứng minh: 

Lựa chọn câu hỏi để xem giải nhanh hơn
LG câu a
LG câu b

LG câu a

LG câu a

Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.

Phương pháp giải:

Áp dụng bất đẳng thức Cô-si với hai số không âm \(a\),\(b\):

\( \displaystyle \displaystyle{{a + b} \over 2} \ge \sqrt {ab} \)

Dấu "=" xảy ra khi \(a = b\). 

Lời giải chi tiết:

Gọi hình chữ nhật có chiều dài \(a\) và chiều rộng \(b\) (với \(a>b>0\))

Các hình chữ nhật có cùng chu vi thì \(C = 2.(a + b)\) không đổi hay \((a + b)\) không đổi.

Suy ra: \(\displaystyle{{a + b} \over 2}\) không đổi.

Diện tích của hình chữ nhật \(S=a.b\)  

Áp dụng bất đẳng thức Cô-si:

\( \displaystyle \displaystyle{{a + b} \over 2} \ge \sqrt {ab} \)

\( \displaystyle\begin{array}{l}
\Leftrightarrow ab \le {\left( {\dfrac{{a + b}}{2}} \right)^2}\\
\Leftrightarrow S \le {\left( {\dfrac{{a + b}}{2}} \right)^2}
\end{array}\) 

Dấu "=" xảy ra khi \(a=b.\) Hay hình chữ nhật có hai cạnh kề bằng nhau nên nó là hình vuông.

Vậy để \( {S_{\max }} = {\left( {\dfrac{{a + b}}{2}} \right)^2}\) thì hình chữ nhật là hình vuông.

Điều này cho thấy trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất. 

(Chú ý: max là lớn nhất) 

LG câu b

LG câu b

Trong các hình chữ  nhật có cùng diện tích thì hình vuông có chu vi bé nhất. 

Phương pháp giải:

Áp dụng bất đẳng thức Cô-si với hai số không âm \(a\),\(b\):

\( \displaystyle \displaystyle{{a + b} \over 2} \ge \sqrt {ab} \)

Dấu "=" xảy ra khi \(a = b\). 

Lời giải chi tiết:

Gọi hình chữ nhật có chiều dài \(a\) và chiều rộng \(b\) (với \(a>b>0\))

Các hình chữ nhật có cùng diện tích \(S=a.b\) thì \(a.b\) không đổi.

Từ bất đẳng thức:

\( \displaystyle{{a + b} \over 2} \ge \sqrt {ab} \)

\( \Leftrightarrow a + b \le 2\sqrt {ab} \)

\( \Leftrightarrow 2.(a + b) \le 4\sqrt {ab} \)

\( \Leftrightarrow C \le 4\sqrt {ab} \)

Dấu "=" xảy ra khi \(a=b\) 

Vậy để \({C_{\min }} = 4\sqrt {ab} \)  thì hình chữ nhật là hình vuông.

Điều này cho thấy trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi bé nhất.

(Chú ý: min là nhỏ nhất) 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved