PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 67 trang 112 SBT toán 9 tập 2

Đề bài

\(a)\) Vẽ đường xoắn \((h.11)\) xuất phát từ một hình vuông cạnh \(1cm.\) Nói cách vẽ.

\(b)\) Tính diện tích hình gạch sọc.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức: Diện tích \(S\) của một hình tròn bán kính \(R\) được tính theo công thức: \(S=\pi.R^2\)

Lời giải chi tiết

 

\(a)\)

- Vẽ hình vuông \(ABCD\) có cạnh \(1 cm\)

- Vẽ cung đường tròn tâm \(A\) bán kính \(1 cm\) ta được cung \(\overparen{DE}\)

- Vẽ cung đường tròn tâm \(B\) bán kính \(2 cm\) ta được cung \(\overparen{EF}\)

- Vẽ cung đường tròn tâm \(C\) bán kính \(3 cm\) ta được cung \(\overparen{FG}\)

- Vẽ cung đường tròn tâm \(D\) bán kính \(4 cm\) ta được cung \(\overparen{GH}\)

\(b)\) Tính diện tích phần gạch sọc.

Diện tích hình quạt \(DAE = \displaystyle {1 \over 4}\pi {.1^2}\)

Diện tích hình quạt \(EBF = \displaystyle {1 \over 4}\pi {.2^2}\)

Diện tích hình quạt \(FCG =  \displaystyle {1 \over 4}\pi {.3^2}\)

Diện tích hình quạt \(GDH =\displaystyle  {1 \over 4}\pi {.4^2}\)

Diện tích phần gạch sọc:

\(S = \displaystyle {1 \over 4}\pi \left( {{1^2} + {2^2} + {3^2} + {4^2}} \right) \)\(= \displaystyle{{15} \over 2}(cm^2)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved