Đề bài
Vẽ đồ thị mỗi hàm số sau, từ đó suy ra tập nghiệm của bất phương trình tương ứng
a) \(y = {x^2} - 3x + 2\) và bất phương trình \({x^2} - 3x + 2 \ge 0\)
b) \(y = {x^2} - x - 6\) và bất phương trình \({x^2} - x - 6 < 0\)
Lời giải chi tiết
a) \(y = {x^2} - 3x + 2\) và bất phương trình \({x^2} - 3x + 2 \ge 0\)
+) Vẽ đồ thị
Ta có: a = 1 > 0 nên parabol có bề lõm quay lên trên. Đỉnh \(I\left( {\frac{3}{2}; - \frac{1}{4}} \right)\). Trục đối xứng \(x = \frac{3}{2}\)
Giao điểm của đồ thị với trục Oy là (0 ; 2) và đồ thị cắt trục Ox tại 2 điểm có hoành độ là x = 1 và x = 2
+) Giải BPT \({x^2} - 3x + 2 \ge 0\)
Từ đồ thị ta thấy với x ≤ 1 hoặc x ≥ 2 thì đồ thị hàm số \(y = {x^2} - 3x + 2\) nằm phía trên trục hoành.
Vậy tập nghiệm của BPT \({x^2} - 3x + 2 \ge 0\) là \(( - \infty ;1] \cup {\rm{[}}2; + \infty )\)
b) \(y = {x^2} - x - 6\) và bất phương trình \({x^2} - x - 6 < 0\)
+) Vẽ đồ thị
Ta có: a = 1 > 0 nên parabol có bề lõm quay lên trên. Đỉnh \(I\left( {\frac{1}{2}; - \frac{{25}}{4}} \right)\). Trục đối xứng \(x = \frac{1}{2}\)
Giao điểm của đồ thị với trục Oy là (0 ; -6) và đồ thị cắt trục Ox tại 2 điểm có hoành độ là x = 3 và x = -2
+) Giải BPT \({x^2} - x - 6 < 0\)
Từ đồ thị ta thấy với -2 < x < 3 thì đồ thị hàm số \(y = {x^2} - x - 6\) nằm phía dưới trục hoành.
Vậy tập nghiệm của BPT \({x^2} - x - 6 < 0\) là \(( - 2;3)\)
Chủ đề 8. Hiến pháp nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chủ đề 7. Hệ thống chính trị nước Cộng hòa xã hội chủ nghĩa Việt Nam
Unit 4: Home sweet home
Hiền tài là nguyên khí của quốc gia
Đề khảo sát chất lượng đầu năm
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10