PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 65 trang 167 SBT toán 9 tập 1

Đề bài

Cho hai đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) và \(B\) như trên hình \(77.\) Biết \(OA = 15cm,\) \(O’A = 13cm,\) \(AB = 24cm.\) Tính độ dài \(OO’.\) 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Nếu hai đường tròn cắt nhau thì hai giao điểm đối xứng với nhau qua đường nối tâm, tức là đường nối tâm là đường trung trực của dây chung.

+) Sử dụng định lí Py-ta-go: Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông.

+) Nếu \(OO' = R + r\) thì đường tròn \((O)\) và đường tròn \((O')\) tiếp xúc ngoài. 

Lời giải chi tiết

 

Gọi \(H\) là giao điểm của \(AB\) và \(OO’.\)

Suy ra \( OO’ ⊥ AB\) tại \(H.\)

Vì \(OO’\) là đường trung trực của \(AB\) (do hai đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) và \(B\)) nên:

\(HA = HB = \displaystyle{1 \over 2}AB \)\(= \displaystyle{1 \over 2}.24 = 12 (cm)\)

Áp dụng định lí \(Py-ta-go\) vào tam giác vuông \(AOH,\) ta có:  \(AO^2=OH^2+AH^2\)

Suy ra: \( OH^2 = OA^2- AH^2 \)\(= 15^2 – 12^2 = 81\)

\(\Rightarrow  OH = 9 (cm)\)

Áp dụng định lí Py-ta-go vào tam giác vuông \(AO’H,\) ta có:\(AO'^2=O'H^2+AH^2\)

Suy ra: \( O'H^2 = O'A^2- AH^2 \)\(= 13^2 – 12^2 = 25\)

 \(\Rightarrow  O'H = 5 (cm)\) 

Vậy \(OO’ =  OH + O’H \)\(= 9 + 5 = 14 (cm).\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved