Trả lời câu hỏi 64 - Mục câu hỏi trắc nghiệm trang 51

1. Nội dung câu hỏi

Giải mỗi bất phương trình sau:

a) \({\log _{\frac{1}{2}}}\left( {2x - 6} \right) <  - 3;\)

b) \({\log _3}\left( {{x^2} - 2x + 2} \right) > 0;\)

c) \({\log _4}\left( {2{x^2} + 3x} \right) \ge \frac{1}{2};\)

d) \({\log _{0,5}}\left( {x - 1} \right) \ge {\log _{0,5}}\left( {5 - 2x} \right);\)

e) \(\log \left( {{x^2} + 1} \right) \le \log \left( {x + 3} \right);\)

g)\({\log _{\frac{1}{5}}}\left( {{x^2} - 6x + 8} \right) + lo{g_5}\left( {x - 4} \right) > 0.\)


2. Phương pháp giải

- Tìm điều kiện cho bất phương trình.

- Giải bất phương trình  bằng cách đưa về cùng cơ số kết hợp biến đổi sử dụng công thức lôgarit.

 

3. Lời giải chi tiết

a) Điều kiện: \(2x - 6 > 0 \Leftrightarrow x > 3.\)

 \({\log _{\frac{1}{2}}}\left( {2x - 6} \right) <  - 3 \Leftrightarrow 2x - 6 > {\left( {\frac{1}{2}} \right)^{ - 3}} \Leftrightarrow 2x - 6 > 8 \Leftrightarrow x > 7\left( {TM} \right).\)

b) Điều kiện: \({x^2} - 2x + 2 > 0 \Leftrightarrow {\left( {x - 1} \right)^2} + 1 > 0\) đúng \(\forall x \in \mathbb{R}.\)

\(\begin{array}{l}{\log _3}\left( {{x^2} - 2x + 2} \right) > 0 \Leftrightarrow {x^2} - 2x + 2 > {3^0} \Leftrightarrow {x^2} - 2x + 2 > 1 \Leftrightarrow {x^2} - 2x + 1 > 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} > 0 \Leftrightarrow x \ne 1.\end{array}\)

c)  Điều kiện: \(2{x^2} + 3x > 0 \Leftrightarrow x\left( {2x + 3} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x > 0\\x <  - \frac{3}{2}\end{array} \right.\)

 \({\log _4}\left( {2{x^2} + 3x} \right) \ge \frac{1}{2} \Leftrightarrow 2{x^2} + 3x \ge {4^{\frac{1}{2}}} \Leftrightarrow 2{x^2} + 3x \ge 2 \Leftrightarrow 2{x^2} + 3x - 2 \ge 0\)

\( \Leftrightarrow \left( {2x - 1} \right)\left( {x + 2} \right) \ge 0 \Leftrightarrow  - 2 \le x \le \frac{1}{2}.\)

Kết hợp với điều kiện xác định suy ra nghiệm của bất phương trình là:

\(0 < x \le \frac{1}{2}\) và \( - 2 \le x <  - \frac{3}{2}.\)

d) \({\log _{0,5}}\left( {x - 1} \right) \ge {\log _{0,5}}\left( {5 - 2x} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 1 \le 5 - 2x\\x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\x > 1\end{array} \right. \Leftrightarrow 1 < x \le 2.\)

Vậy nghiệm của bất phương trình là: \(\left( {1;2} \right].\)

e) \(\log \left( {{x^2} + 1} \right) \le \log \left( {x + 3} \right) \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 1 \le x + 3\\{x^2} + 1 > 0\end{array} \right. \Leftrightarrow {x^2} - x - 2 \le 0\)

\( \Leftrightarrow \left( {x - 2} \right)\left( {x + 1} \right) \le 0 \Leftrightarrow  - 1 \le x \le 2.\)

Vậy nghiệm của bất phương trình là: \(\left[ {1;2} \right].\)

g) \({\log _{\frac{1}{5}}}\left( {{x^2} - 6x + 8} \right) + lo{g_5}\left( {x - 4} \right) > 0 \Leftrightarrow  - {\log _5}\left( {{x^2} - 6x + 8} \right) + lo{g_5}\left( {x - 4} \right) > 0\)

\( \Leftrightarrow lo{g_5}\left( {x - 4} \right) > {\log _5}\left( {{x^2} - 6x + 8} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 4 > {x^2} - 6x + 8\\{x^2} - 6x + 8 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 7x + 12 < 0\\{x^2} - 6x + 8 > 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 3} \right)\left( {x - 4} \right) < 0\\\left( {x - 2} \right)\left( {x - 4} \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3 < x < 4\\\left[ \begin{array}{l}x > 4\\x < 2\end{array} \right.\end{array} \right. \Leftrightarrow {\rm{He\"a  vo\^a  nghie\"a m}}{\rm{.}}\)

Suy ra bất phương trình vô nghiệm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved