Bài 1. Nhân đơn thức với đa thức
Bài 2. Nhân đa thức với đa thức
Bài 3, 4, 5. Những hằng đẳng thức đáng nhớ
Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10. Chia đơn thức cho đơn thức
Bài 11. Chia đa thức cho đơn thức
Bài 12. Chia đa thức một biến đã sắp xếp
Bài tập ôn chương I. Phép nhân và phép chia các đa thức
Bài 1. Phân thức đại số
Bài 2. Tính chất cơ bản của phân thức
Bài 3. Rút gọn phân thức
Bài 4. Quy đồng mẫu thức nhiều phân thức
Bài 5. Phép cộng các phân thức đại số
Bài 6. Phép trừ các phân thức đại số
Bài 7. Phép nhân các phân thức đại số
Bài 8. Phép chia các phân thức đại số
Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
Bài tập ôn chương II. Phân thức đại số
Tìm điều kiện của \(x\) để giá trị của biểu thức được xác định và chứng minh rằng với điều kiện đó biểu thức không phụ thuộc vào biến:
LG a
\(\displaystyle {\displaystyle {x - {1 \over x}} \over {\displaystyle {{{x^2} + 2x + 1} \over x} - {{2x + 2} \over x}}}\)
Phương pháp giải:
- Tìm điều kiện của \(x\) để giá trị tương ứng của biểu thức khác \(0\).
- Thực hiện các phép tính theo đúng quy tắc, chứng minh biểu thức đã cho có giá trị là một hằng số.
Lời giải chi tiết:
\(\displaystyle {{x - \displaystyle {1 \over x}} \over {\displaystyle {{{x^2} + 2x + 1} \over x} - {{2x + 2} \over x}}}\)
Ta có: \(x - \displaystyle {1 \over x}\) xác định khi \(x ≠ 0\)
\(\displaystyle {{{x^2} + 2x + 1} \over x} - {{2x + 2} \over x}\) xác định khi \(x ≠ 0\)
\(\displaystyle {{{x^2} + 2x + 1} \over x} - {{2x + 2} \over x} \ne 0\) \( \Rightarrow \dfrac{{{x^2} + 2x + 1 - 2x - 2}}{x} \ne 0\) \(\displaystyle \Rightarrow {{{x^2} - 1} \over x} \ne 0\)
\( \Rightarrow {x^2} - 1 \ne 0 \) \( \Rightarrow \left( {x + 1} \right)\left( {x - 1} \right) \ne 0 \)\(\Rightarrow x \ne - 1\) và \(x \ne 1 \)
Vậy với \(x ≠ 0, x ≠ 1\) và \(x ≠ -1\) thì biểu thức xác định.
Ta có:
\(\displaystyle {{x - \displaystyle {1 \over x}} \over {\displaystyle {{{x^2} + 2x + 1} \over x} - {{2x + 2} \over x}}}\)\( \displaystyle = {\displaystyle {{{{x^2} - 1} \over x}} \over {\displaystyle{{{x^2} - 1} \over x}}}\)\(\displaystyle = {\displaystyle {{x^2} - 1} \over x}.{x \over {{x^2} - 1}} = 1\)
Vậy với điều kiện \(x ≠ 0, x ≠ 1\) và \(x ≠ -1\) thì biểu thức đã cho không phụ thuộc biến \(x.\)
LG b
\(\displaystyle {\displaystyle {{x \over {x + 1}} + {1 \over {x - 1}}} \over {\displaystyle {{2x + 2} \over {x - 1}} - {{4x} \over {{x^2} - 1}}}}\)
Phương pháp giải:
- Tìm điều kiện của \(x\) để giá trị tương ứng của biểu thức khác \(0\).
- Thực hiện các phép tính theo đúng quy tắc, chứng minh biểu thức đã cho có giá trị là một hằng số.
Lời giải chi tiết:
\(\displaystyle {\displaystyle {{x \over {x + 1}} + {1 \over {x - 1}}} \over {\displaystyle {{2x + 2} \over {x - 1}} - {{4x} \over {{x^2} - 1}}}}\)
Ta có: \(\displaystyle {x \over {x + 1}} + {1 \over {x - 1}}\) xác định khi \(x + 1 ≠ 0\) và \(x – 1 ≠ 0\)\(\Rightarrow x \ne \pm 1\)
\(\displaystyle {{2x + 2} \over {x - 1}} - {{4x} \over {{x^2} - 1}}\) xác định khi \(x – 1 ≠ 0\) và \({x^2} - 1 \ne 0 \Rightarrow x \ne \pm 1\)
\(\displaystyle {{2x + 2} \over {x - 1}} - {{4x} \over {{x^2} - 1}} \ne 0\)\( \Rightarrow \displaystyle {{\left( {2x + 2} \right)\left( {x + 1} \right) - 4x} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} \ne 0\)
\( \Rightarrow \displaystyle {{2{x^2} + 2x + 2x + 2 - 4x} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} \ne 0\)\( \Rightarrow \displaystyle {{2{x^2} + 2} \over {\left( {x + 1} \right)\left( {x - 1} \right)}} \ne 0\) với mọi \(x\)
Vậy điều kiện để biểu thức xác định là \(x ≠ 1\) và \(x ≠ -1\)
Ta có:
\(\displaystyle {\displaystyle{{x \over {x + 1}} + {1 \over {x - 1}}} \over {\displaystyle {{2x + 2} \over {x - 1}} - {{4x} \over {{x^2} - 1}}}}\)
\( \displaystyle = {\displaystyle {{{x\left( {x - 1} \right) + \left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {x - 1} \right)}}} \over {\displaystyle {{2{x^2} + 2} \over {\left( {x + 1} \right)\left( {x - 1} \right)}}}}\)
\( = \dfrac{{{x^2} - x + x + 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}:\dfrac{{2\left( {{x^2} + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = \displaystyle {{{x^2} + 1} \over {\left( {x + 1} \right)\left( {x - 1} \right)}}.{{\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {{x^2} + 1} \right)}}\)\(\displaystyle = {1 \over 2}\)
Vậy với điều kiện \( x ≠ 1\) và \(x ≠ -1\) thì biểu thức đã cho không phụ thuộc biến \(x.\)
\(x ≠ 0, x ≠ 1\) và \(x ≠ -1\)
LG c
\(\displaystyle {1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}\)\(.\displaystyle \left( {{x \over {{x^2} - 2x + 1}} - {1 \over {{x^2} - 1}}} \right)\)
Phương pháp giải:
- Tìm điều kiện của \(x\) để giá trị tương ứng của biểu thức khác \(0\).
- Thực hiện các phép tính theo đúng quy tắc, chứng minh biểu thức đã cho có giá trị là một hằng số.
Lời giải chi tiết:
\(\displaystyle {1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}\)\(.\displaystyle \left( {{x \over {{x^2} - 2x + 1}} - {1 \over {{x^2} - 1}}} \right)\)
Biểu thức xác định khi \(x – 1 ≠ 0,\) \({x^2} - 2x + 1 \ne 0\) và \({x^2} - 1 \ne 0\)
\(x - 1 \ne 0 \Rightarrow x \ne 1 \)
\( {x^2} - 2x + 1 \ne 0 \Rightarrow {\left( {x - 1} \right)^2} \ne 0\)\( \Rightarrow x \ne 1 \)
\( {x^2} - 1 \ne 0 \Rightarrow \left( {x + 1} \right)\left( {x - 1} \right) \ne 0 \)\(\Rightarrow x \ne - 1\) và \(x \ne 1 \)
Vậy biểu thức xác định với \(x ≠ -1\) và \(x ≠ 1\)
Ta có: \(\displaystyle {1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}\)\(.\displaystyle \left( {{x \over {{x^2} - 2x + 1}} - {1 \over {{x^2} - 1}}} \right)\)
\(\displaystyle = {1 \over {x - 1}} - {{x\left( {{x^2} - 1} \right)} \over {{x^2} + 1}}\)\(.\displaystyle \left[ {{x \over {{{\left( {x - 1} \right)}^2}}} - {1 \over {\left( {x + 1} \right)\left( {x - 1} \right)}}} \right] \)
\(\displaystyle = {1 \over {x - 1}} - {{x\left( {x + 1} \right)\left( {x - 1} \right)} \over {{x^2} + 1}}\)\(\displaystyle \displaystyle .{{x\left( {x + 1} \right) - \left( {x - 1} \right)} \over {\left( {x + 1} \right){{\left( {x - 1} \right)}^2}}} \)\(\displaystyle = {1 \over {x - 1}} - {{x\left( {{x^2} + x - x + 1} \right)} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}}\)\(\displaystyle = {1 \over {x - 1}} - {{x\left( {{x^2} + 1} \right)} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}} \)\(\displaystyle = {1 \over {x - 1}} - {x \over {x - 1}} \)\(\displaystyle = {{ - \left( {x - 1} \right)} \over {x - 1}} = - 1 \)
Vậy với điều kiện \(x ≠ 1\) và \(x ≠ -1\) thì biểu thức đã cho không phụ thuộc biến \(x.\)
LG d
\(\displaystyle \left( {{x \over {{x^2} - 36}} - {{x - 6} \over {{x^2} + 6x}}} \right)\)\(:\displaystyle {{2x - 6} \over {{x^2} + 6x}} + {x \over {6 - x}}\)
Phương pháp giải:
- Tìm điều kiện của \(x\) để giá trị tương ứng của biểu thức khác \(0\).
- Thực hiện các phép tính theo đúng quy tắc, chứng minh biểu thức đã cho có giá trị là một hằng số.
Lời giải chi tiết:
\(\displaystyle \left( {{x \over {{x^2} - 36}} - {{x - 6} \over {{x^2} + 6x}}} \right)\)\(:\displaystyle {{2x - 6} \over {{x^2} + 6x}} + {x \over {6 - x}}\)
Biểu thức xác định khi \( {x^2} - 36 \ne 0,\) \({x^2} + 6x \ne 0,\) \(6 - x \ne 0,\) \(2x - 6 \ne 0 \)
+) \({x^2} - 36 \ne 0 \Rightarrow \left( {x - 6} \right)\left( {x + 6} \right) \ne 0\)\( \Rightarrow x \ne 6\) và \(x \ne - 6 \)
+) \({x^2} + 6x \ne 0 \Rightarrow x\left( {x + 6} \right) \ne 0\)\( \Rightarrow x \ne 0\) và \(x \ne - 6 \)
+) \( 6 - x \ne 0 \Rightarrow x \ne 6 \);
+) \( 2x - 6 \ne 0 \Rightarrow x \ne 3 \).
Vậy \(x ≠ 0,\) \(x ≠ 3,\) \(x ≠ 6\) và \(x ≠ -6\) thì biểu thức xác định.
Ta có : \(\displaystyle \left( {{x \over {{x^2} - 36}} - {{x - 6} \over {{x^2} + 6x}}} \right):{{2x - 6} \over {{x^2} + 6x}}\)\( + \displaystyle {x \over {6 - x}}\)
\(\displaystyle = \left[ {{x \over {\left( {x + 6} \right)\left( {x - 6} \right)}} - {{x - 6} \over {x\left( {x + 6} \right)}}} \right]\)\(:\displaystyle {{2x - 6} \over {x\left( {x + 6} \right)}} + {x \over {6 - x}} \)\(\displaystyle = {{{x^2} - {{\left( {x - 6} \right)}^2}} \over {x\left( {x + 6} \right)\left( {x - 6} \right)}}.{{x\left( {x + 6} \right)} \over {2\left( {x - 3} \right)}}\)\(\displaystyle + {x \over {6 - x}}\)\(\displaystyle = {{{x^2} - {x^2} + 12x - 36} \over {x\left( {x + 6} \right)\left( {x - 6} \right)}}.{{x\left( {x + 6} \right)} \over {2\left( {x - 3} \right)}}\)\(\displaystyle + {x \over {6 - x}}\)\(\displaystyle = {{12\left( {x - 3} \right)} \over {x - 6}}.{1 \over {2\left( {x - 3} \right)}} + {x \over {6 - x}}\)\(\displaystyle = {6 \over {x - 6}} - {x \over {x - 6}} = {{ - \left( {x - 6} \right)} \over {x - 6}} = - 1 \)
Vậy với điều kiện \(x ≠ 0,\) \(x ≠ 3,\) \(x ≠ 6\) và \(x ≠ -6\) thì biểu thức đã cho không phụ thuộc biến \(x.\)
Bài 2. Tôn trọng sự đa dạng của các dân tộc
Bài 1. Vị trí địa lí, địa hình và khoáng sản
Bài 18: Quyền khiếu nại, tố cáo của công dân
Chủ đề 2. Em yêu làn điệu dân ca
Tải 25 đề thi học kì 2 Sinh 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8