PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 63* trang 166 SBT toán 9 tập 1

Đề bài

Cho tam giác \(ABC\) vuông tại \(A.\) Đường tròn nội tiếp tam giác \(ABC\) tiếp xúc với \(BC\) tại \(D.\) Chứng minh rằng: \({S_{ABC}} = BD.DC\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức: 

+)  Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đó cách đều hai tiếp điểm.

+) Sử dụng định lí Py-ta-go: trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông.

Lời giải chi tiết

 

Gọi \(E\) và \(F\) lần lượt là tiếp điểm của đường tròn với \(AB\) và \(AC.\)

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

\(AE = AF\) 

\( BE = BD\)

\( CD = CF\)

Ta lại có: \(BD = BC - CD\)

\( BE = AB – AE\)

Suy ra: \(BD + BE = AB + BC – (AE + CD )\)

\( = AB + BC – (AF + CF)\)

\(= AB + BC – AC\)

Suy ra: \(BD =\displaystyle {{AB + BC - AC} \over 2}\)

Lại có: \(CD = BC – BD\)

\( CF = AC = AF\)

Suy ra: \(CD + CF \)\(= BC + AC – ( BD + AF)\)

\(= BC + AC – (BE + AE)\)

\(= BC + AC – BA\)

Suy ra: \(CD = \displaystyle {{BC + AC - AB} \over 2}\)

Ta có:  \(BD.CD\)\( =\displaystyle  {{AB + BC - AC} \over 2}.{{BC + AC - AB} \over 2}\)

\(\displaystyle = {{\left[ {BC - (AC - AB)} \right]\left[ {BC + (AC - AB)} \right]} \over 4}\)

\(\displaystyle ={{B{C^2} - {{(AC - AB)}^2}} \over 4}\)

\( = \displaystyle {{B{C^2} - A{C^2} - A{B^2} + 2AB.AC} \over 4}\)  \((1)\)

Áp dụng định lí Py-ta-go vào tam giác vuông \(ABC,\) ta có:

\( BC^2 = AB^2 + AC^2  \;\;         (2)\)

Từ \((1)\) và \((2)\) suy ra: \(BD.CD = \displaystyle {{2AB.AC} \over 4} \)\(=  \displaystyle {{AB.AC} \over 2}\)

Mà \({S_{ABC}} = \displaystyle {1 \over 2}AB.AC\)

Vậy \({S_{ABC}} = BD.DC.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved