Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Chứng minh:
LG câu a
LG câu a
\( \displaystyle{{\left( {x\sqrt y + y\sqrt x } \right)\left( {\sqrt x - \sqrt y } \right)} \over {\sqrt {xy} }} = x - y\) với \(x > 0\) và \(y > 0\);
Phương pháp giải:
Áp dụng hằng đẳng thức:
\((a - b)(a + b) = {a^2} - {b^2}\)
Lời giải chi tiết:
Ta có:
\( \displaystyle{{\left( {x\sqrt y + y\sqrt x } \right)\left( {\sqrt x - \sqrt y } \right)} \over {\sqrt {xy} }}\)\(\displaystyle = {{\left( {\sqrt {{x^2}y} + \sqrt {x{y^2}} } \right)\left( {\sqrt x - \sqrt y } \right)} \over {\sqrt {xy} }}\)
\( \displaystyle = {{\sqrt {xy} \left( {\sqrt x + \sqrt y } \right)\left( {\sqrt x - \sqrt y } \right)} \over {\sqrt {xy} }}\)\(\displaystyle = \left( {\sqrt x + \sqrt y } \right)\left( {\sqrt x - \sqrt y } \right)\)
\( \displaystyle = {\left( {\sqrt x } \right)^2} - {\left( {\sqrt y } \right)^2} = x - y\)
(với \(x > 0\) và \(y > 0\))
Vế trái bằng vế phải nên đẳng thức được chứng minh.
LG câu b
LG câu b
\( \displaystyle{{\sqrt {{x^3}} - 1} \over {\sqrt x - 1}} = x + \sqrt x + 1\) với \(x \ge 0\) và \(x \ne 1\).
Phương pháp giải:
Áp dụng hằng đẳng thức:
\({a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})\)
Lời giải chi tiết:
Vì \(x \ge 0\) nên \( \displaystyle\sqrt {{x^3}} = {\left( {\sqrt x } \right)^3}\)
Ta có:
\( \displaystyle{{\sqrt {{x^3}} - 1} \over {\sqrt x - 1}} = {{{{\left( {\sqrt x } \right)}^3} - {1^3}} \over {\sqrt x - 1}}\)\(\displaystyle = {{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)} \over {\sqrt x - 1}}\)
\( \displaystyle = x + \sqrt x + 1\) với \(x \ge 0\) và \( x \ne 1\).
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Bài 11
Bài 24. Vùng Bắc Trung Bộ (tiếp theo)
Đề thi vào 10 môn Toán Bắc Ninh
Đề thi vào 10 môn Toán Vĩnh Phúc
SOẠN VĂN 9 TẬP 2