1. Nội dung câu hỏi
Khoảng cách từ một hành tinh đến Mặt Trời có thể xấp xỉ bằng một hàm số của độ dài năm của hành tinh đó. Công thức của hàm số đó là \(d = \sqrt[3]{{6{t^2}}}\), trong đó là khoảng cách từ hành tinh đó đến Mặt Trời (tính bằng triệu dặm) và là độ dài năm của hạnh tinh đó (tính bằng số ngày Trái Đất).
(Theo Algebra 2, NXB MacGraw-Hill, 2008).
a) Nếu độ dài của một năm trên Sao Hoả là \(687\) ngày Trái Đất thì khoảng cách từ Sao Hoả đến Mặt Trời là bao nhiêu?
b) Tính khoảng cách từ Trái Đất đến Mặt Trời (coi một năm trên Trái Đất có 365 ngày).
(Kết quả của câu a và câu b tính theo đơn vị triệu dặm và làm tròn đến chữ số thập phân thứ hai).
2. Phương pháp giải
a) Áp dụng công thức của hàm số đó là \(d = \sqrt[3]{{6{t^2}}}\)với \(t = 687\)
b) Áp dụng công thức của hàm số đó là \(d = \sqrt[3]{{6{t^2}}}\)với \(t = 365\)
3. Lời giải chi tiết
a) Thay \(t = 687\) vào công thức ta được khoàng cách từ Sao Hoà đến Mặt Trời là
\(d = \sqrt[3]{{6{t^2}}} = \sqrt[3]{{6 \cdot {{687}^2}}} \approx 141,48\) (triệu dặm)
b) Thay \(t = 365\) vào công thức ta được khoảng cách từ Trái Đất đến Mặt Trời là:
\(d = \sqrt[3]{{6{t^2}}} = \sqrt[3]{{6 \cdot {{365}^2}}} \approx 92,81\) (triệu dặm).
Unit 1: Food for Life
Chuyên đề 3: Một số yếu tố vẽ kĩ thuật
SOẠN VĂN VĂN 11 TẬP 2
Bài 11: Tiết 1: Tự nhiên, dân cư và xã hội khu vực Đông Nam Á - Tập bản đồ Địa lí 11
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Địa lí lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11