1. Nội dung câu hỏi
Giải mỗi phương trình sau:
a) \({3^{x - 1}} = 5;\)
b) \({3^{{x^2} - 4x + 5}} = 9;\)
c) \({2^{2x + 3}} = 8\sqrt 2 ;\)
d) \({8^{x - 2}} = {4^{1 - 2x}};\)
e) \({2^{{x^2} - 3x - 2}} = 0,{25.16^{x - 3}};\)
g) \({2^{{x^2} - 4x + 4}} = 3.\)
2. Phương pháp giải
Đưa 2 vế về cùng cơ số hoặc sử dụng với \(a > 0,{\rm{ }}a \ne 1\) thì \({\log _a}x = b \Leftrightarrow x = {a^b}.\)
3. Lời giải chi tiết
a) \({3^{x - 1}} = 5 \Leftrightarrow x - 1 = {\log _3}5 \Leftrightarrow x = 1 + {\log _3}5.\)
b) \({3^{{x^2} - 4x + 5}} = 9 \Leftrightarrow {3^{{x^2} - 4x + 5}} = {3^2} \Leftrightarrow {x^2} - 4x + 5 = 2 \Leftrightarrow {x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\).
c) \({2^{2x + 3}} = 8\sqrt 2 \Leftrightarrow {2^{2x + 3}} = {2^3}{.2^{\frac{1}{2}}} \Leftrightarrow {2^{2x + 3}} = {2^{\frac{7}{2}}} \Leftrightarrow 2x + 3 = \frac{7}{2} \Leftrightarrow x = \frac{1}{4}.\)
d) \({8^{x - 2}} = {4^{1 - 2x}} \Leftrightarrow {2^{3\left( {x - 2} \right)}} = {2^{2\left( {1 - 2x} \right)}} \Leftrightarrow 3x - 6 = 2 - 4x \Leftrightarrow 7x = 8 \Leftrightarrow x = \frac{8}{7}.\)
e) Ta có:
\(\begin{array}{l}{2^{{x^2} - 3x - 2}} = 0,{25.16^{x - 3}} \Leftrightarrow {2^{{x^2} - 3x - 2}} = {2^{ - 2}}{.2^{4\left( {x - 3} \right)}} \Leftrightarrow {2^{{x^2} - 3x - 2}} = {2^{4x - 14}} \Leftrightarrow {x^2} - 3x - 2 = 4x - 14\\ \Leftrightarrow {x^2} - 7x + 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 4\end{array} \right..\end{array}\) g) \({2^{{x^2} - 4x + 4}} = 3 \Leftrightarrow {x^2} - 4x + 4 = {\log _2}3 \Leftrightarrow {\left( {x - 2} \right)^2} = {\log _2}3 \Leftrightarrow \left[ \begin{array}{l}x = 2 + {\log _2}3\\x = 2 - {\log _2}3\end{array} \right.\).
CHƯƠNG IV. SINH SẢN - SINH HỌC 11 NÂNG CAO
C
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Hóa học lớp 11
Unit 2: The generation gap
Bài 15: Dẫn xuất halogen
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11