Trả lời câu hỏi 60 - Mục câu hỏi trắc nghiệm trang 30

1. Nội dung câu hỏi

Giải phương trình:

a) \(\sin \left( {3x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{\pi }{6}} \right)\)     

b) \(\cos \left( {2x - \frac{\pi }{3}} \right) = \sin \left( {\frac{\pi }{4} - x} \right)\)

c*) \({\sin ^2}\left( {x + \frac{\pi }{4}} \right) = {\sin ^2}\left( {2x + \frac{\pi }{2}} \right)\)      

d*) \({\cos ^2}\left( {2x + \frac{\pi }{2}} \right) = {\sin ^2}\left( {x + \frac{\pi }{6}} \right)\)

e) \(\cos x + \sin x = 0\)                    

g) \(\sin x - \sqrt 3 \cos x = 0\)


2. Phương pháp giải

a) Sử dụng kết quả \(\sin x = \sin \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x = \pi  - \alpha  + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

b) Sử dụng công thức \(\sin \alpha  = \cos \left( {\frac{\pi }{2} - \alpha } \right)\) và \(\cos x = \cos \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x =  - \alpha  + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

c) Sử dụng công thức \({\sin ^2}x = \frac{{1 - \cos 2x}}{2}\) và kết quả \(\cos x = \cos \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x =  - \alpha  + k2\pi \end{array} \right.\)  \(\left( {k \in \mathbb{Z}} \right)\)

d) Sử dụng các công thức \({\sin ^2}x = \frac{{1 - \cos 2x}}{2}\), \({\cos ^2}x = \frac{{1 + \cos 2x}}{2}\) và kết quả \(\cos x = \cos \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x =  - \alpha  + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

e) Sử dụng công thức \(\sin \left( {x + \frac{\pi }{4}} \right) = \sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4} = \frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right)\), để phương trình trở thành \(\sin \left( {x + \frac{\pi }{4}} \right) = 0\).

Sử dụng kết quả \(\sin x = \sin \alpha  \Leftrightarrow \left[ \begin{array}{l}x = \alpha  + k2\pi \\x = \pi  - \alpha  + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

f) Nhận xét, nếu \(\cos x = 0\) thì \(\sin x = 0\). Điều này là vô lí, do \({\sin ^2}x + {\cos ^2}x = 1\).

Như vậy \(\cos x \ne 0\). Biến đổi phương trình trở thành \(\tan x = \sqrt 3 \).

Sử dụng kết quả \(\tan x = \tan \alpha  \Leftrightarrow x = \alpha  + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)

 

3. Lời giải chi tiết

a) Ta có:

\(\sin \left( {3x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}3x - \frac{\pi }{4} = x + \frac{\pi }{6} + k2\pi \\3x - \frac{\pi }{4} = \pi  - \left( {x + \frac{\pi }{6}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = \frac{{5\pi }}{{12}} + k2\pi \\4x = \frac{{13\pi }}{{12}} + k2\pi \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{24}} + k\pi \\x = \frac{{13\pi }}{{48}} + k\frac{\pi }{2}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

b) Ta có \(\sin \left( {\frac{\pi }{4} - x} \right) = \cos \left( {\frac{\pi }{2} - \frac{\pi }{4} + x} \right) = \cos \left( {\frac{\pi }{4} + x} \right)\). Phương trình trở thành:

\(\cos \left( {2x - \frac{\pi }{3}} \right) = \cos \left( {x + \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} = x + \frac{\pi }{4} + k2\pi \\2x - \frac{\pi }{3} =  - \left( {x + \frac{\pi }{4}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{7\pi }}{{12}} + k2\pi \\3x = \frac{\pi }{{12}} + k2\pi \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{7\pi }}{{12}} + k2\pi \\x = \frac{\pi }{{36}} + k\frac{{2\pi }}{3}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

c) Sử dụng công thức hạ bậc, ta có:

\({\sin ^2}\left( {x + \frac{\pi }{4}} \right) = \frac{{1 - \cos \left[ {2\left( {x + \frac{\pi }{4}} \right)} \right]}}{2} = \frac{{1 - \cos \left( {2x + \frac{\pi }{2}} \right)}}{2}\),

\({\sin ^2}\left( {2x + \frac{\pi }{2}} \right) = \frac{{1 - \cos \left[ {2\left( {2x + \frac{\pi }{2}} \right)} \right]}}{2} = \frac{{1 - \cos \left( {4x + \pi } \right)}}{2}\)

Phương trình trở thành:

\(\frac{{1 - \cos \left( {2x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 - \cos \left( {4x + \pi } \right)}}{2} \Leftrightarrow \cos \left( {2x + \frac{\pi }{2}} \right) = \cos \left( {4x + \pi } \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{2} = 4x + \pi  + k2\pi \\2x + \frac{\pi }{2} =  - \left( {4x + \pi } \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 2x = \frac{\pi }{2} + k2\pi \\6x =  - \frac{{3\pi }}{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{4} + k\pi \\x =  - \frac{\pi }{4} + k\frac{\pi }{3}\end{array} \right. \Leftrightarrow x =  - \frac{\pi }{4} + k\frac{\pi }{3}\)\(\left( {k \in \mathbb{Z}} \right)\)

d) Sử dụng công thức hạ bậc, ta có:

\({\cos ^2}\left( {2x + \frac{\pi }{2}} \right) = \frac{{1 + \cos \left[ {2\left( {2x + \frac{\pi }{2}} \right)} \right]}}{2} = \frac{{1 + \cos \left( {4x + \pi } \right)}}{2}\)

\({\sin ^2}\left( {x + \frac{\pi }{6}} \right) = \frac{{1 - \cos \left[ {2\left( {x + \frac{\pi }{6}} \right)} \right]}}{2} = \frac{{1 - \cos \left( {2x + \frac{\pi }{3}} \right)}}{2}\)

Phương trình trở thành:

\(\frac{{1 + \cos \left( {4x + \pi } \right)}}{2} = \frac{{1 - \cos \left( {2x + \frac{\pi }{3}} \right)}}{2} \Leftrightarrow \cos \left( {4x + \pi } \right) =  - \cos \left( {2x + \frac{\pi }{3}} \right)\)

Mặt khác, ta có \( - \cos \left( {2x + \frac{\pi }{3}} \right) = \cos \left( {\pi  + 2x + \frac{\pi }{3}} \right) = \cos \left( {2x + \frac{{4\pi }}{3}} \right)\).

Phương trình trở thành:

\(\cos \left( {4x + \pi } \right) = \cos \left( {2x + \frac{{4\pi }}{3}} \right) \Leftrightarrow \left[ \begin{array}{l}4x + \pi  = 2x + \frac{{4\pi }}{3} + k2\pi \\4x + \pi  =  - \left( {2x + \frac{{4\pi }}{3}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{3} + k2\pi \\6x =  - \frac{{7\pi }}{3} + k2\pi \end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x =  - \frac{{7\pi }}{{18}} + k\frac{\pi }{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x =  - \frac{\pi }{{18}} + k\frac{\pi }{3}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)

e) Ta có \(\frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right) = \sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4} = \sin \left( {x + \frac{\pi }{4}} \right)\).

Do đó, \(\cos x + \sin x = 0 \Leftrightarrow \frac{1}{{\sqrt 2 }}\left( {\cos x + \sin x} \right) = 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 0\)

\( \Leftrightarrow x + \frac{\pi }{4} = k\pi  \Leftrightarrow x =  - \frac{\pi }{4} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)

f) Nếu \(\cos x = 0\) thì \(\sin x = 0\). Điều này là vô lí, do \({\sin ^2}x + {\cos ^2}x = 1\).

Như vậy \(\cos x \ne 0\). Phương trình trở thành:

\(\sin x = \sqrt 3 \cos x \Leftrightarrow \frac{{\sin x}}{{\cos x}} = \sqrt 3  \Leftrightarrow \tan x = \sqrt 3 \)

Ta có \(\tan \frac{\pi }{3} = \sqrt 3 \). Phương trình trở thành \(\tan x = \tan \frac{\pi }{3} \Leftrightarrow x = \frac{\pi }{3} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved