1. Nội dung câu hỏi
Giải phương trình:
a) \(\sin \left( {3x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{\pi }{6}} \right)\)
b) \(\cos \left( {2x - \frac{\pi }{3}} \right) = \sin \left( {\frac{\pi }{4} - x} \right)\)
c*) \({\sin ^2}\left( {x + \frac{\pi }{4}} \right) = {\sin ^2}\left( {2x + \frac{\pi }{2}} \right)\)
d*) \({\cos ^2}\left( {2x + \frac{\pi }{2}} \right) = {\sin ^2}\left( {x + \frac{\pi }{6}} \right)\)
e) \(\cos x + \sin x = 0\)
g) \(\sin x - \sqrt 3 \cos x = 0\)
2. Phương pháp giải
a) Sử dụng kết quả \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
b) Sử dụng công thức \(\sin \alpha = \cos \left( {\frac{\pi }{2} - \alpha } \right)\) và \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
c) Sử dụng công thức \({\sin ^2}x = \frac{{1 - \cos 2x}}{2}\) và kết quả \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\) \(\left( {k \in \mathbb{Z}} \right)\)
d) Sử dụng các công thức \({\sin ^2}x = \frac{{1 - \cos 2x}}{2}\), \({\cos ^2}x = \frac{{1 + \cos 2x}}{2}\) và kết quả \(\cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
e) Sử dụng công thức \(\sin \left( {x + \frac{\pi }{4}} \right) = \sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4} = \frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right)\), để phương trình trở thành \(\sin \left( {x + \frac{\pi }{4}} \right) = 0\).
Sử dụng kết quả \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
f) Nhận xét, nếu \(\cos x = 0\) thì \(\sin x = 0\). Điều này là vô lí, do \({\sin ^2}x + {\cos ^2}x = 1\).
Như vậy \(\cos x \ne 0\). Biến đổi phương trình trở thành \(\tan x = \sqrt 3 \).
Sử dụng kết quả \(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
3. Lời giải chi tiết
a) Ta có:
\(\sin \left( {3x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}3x - \frac{\pi }{4} = x + \frac{\pi }{6} + k2\pi \\3x - \frac{\pi }{4} = \pi - \left( {x + \frac{\pi }{6}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = \frac{{5\pi }}{{12}} + k2\pi \\4x = \frac{{13\pi }}{{12}} + k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{24}} + k\pi \\x = \frac{{13\pi }}{{48}} + k\frac{\pi }{2}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
b) Ta có \(\sin \left( {\frac{\pi }{4} - x} \right) = \cos \left( {\frac{\pi }{2} - \frac{\pi }{4} + x} \right) = \cos \left( {\frac{\pi }{4} + x} \right)\). Phương trình trở thành:
\(\cos \left( {2x - \frac{\pi }{3}} \right) = \cos \left( {x + \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} = x + \frac{\pi }{4} + k2\pi \\2x - \frac{\pi }{3} = - \left( {x + \frac{\pi }{4}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{7\pi }}{{12}} + k2\pi \\3x = \frac{\pi }{{12}} + k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{7\pi }}{{12}} + k2\pi \\x = \frac{\pi }{{36}} + k\frac{{2\pi }}{3}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
c) Sử dụng công thức hạ bậc, ta có:
\({\sin ^2}\left( {x + \frac{\pi }{4}} \right) = \frac{{1 - \cos \left[ {2\left( {x + \frac{\pi }{4}} \right)} \right]}}{2} = \frac{{1 - \cos \left( {2x + \frac{\pi }{2}} \right)}}{2}\),
\({\sin ^2}\left( {2x + \frac{\pi }{2}} \right) = \frac{{1 - \cos \left[ {2\left( {2x + \frac{\pi }{2}} \right)} \right]}}{2} = \frac{{1 - \cos \left( {4x + \pi } \right)}}{2}\)
Phương trình trở thành:
\(\frac{{1 - \cos \left( {2x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 - \cos \left( {4x + \pi } \right)}}{2} \Leftrightarrow \cos \left( {2x + \frac{\pi }{2}} \right) = \cos \left( {4x + \pi } \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{2} = 4x + \pi + k2\pi \\2x + \frac{\pi }{2} = - \left( {4x + \pi } \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 2x = \frac{\pi }{2} + k2\pi \\6x = - \frac{{3\pi }}{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{4} + k\frac{\pi }{3}\end{array} \right. \Leftrightarrow x = - \frac{\pi }{4} + k\frac{\pi }{3}\)\(\left( {k \in \mathbb{Z}} \right)\)
d) Sử dụng công thức hạ bậc, ta có:
\({\cos ^2}\left( {2x + \frac{\pi }{2}} \right) = \frac{{1 + \cos \left[ {2\left( {2x + \frac{\pi }{2}} \right)} \right]}}{2} = \frac{{1 + \cos \left( {4x + \pi } \right)}}{2}\)
\({\sin ^2}\left( {x + \frac{\pi }{6}} \right) = \frac{{1 - \cos \left[ {2\left( {x + \frac{\pi }{6}} \right)} \right]}}{2} = \frac{{1 - \cos \left( {2x + \frac{\pi }{3}} \right)}}{2}\)
Phương trình trở thành:
\(\frac{{1 + \cos \left( {4x + \pi } \right)}}{2} = \frac{{1 - \cos \left( {2x + \frac{\pi }{3}} \right)}}{2} \Leftrightarrow \cos \left( {4x + \pi } \right) = - \cos \left( {2x + \frac{\pi }{3}} \right)\)
Mặt khác, ta có \( - \cos \left( {2x + \frac{\pi }{3}} \right) = \cos \left( {\pi + 2x + \frac{\pi }{3}} \right) = \cos \left( {2x + \frac{{4\pi }}{3}} \right)\).
Phương trình trở thành:
\(\cos \left( {4x + \pi } \right) = \cos \left( {2x + \frac{{4\pi }}{3}} \right) \Leftrightarrow \left[ \begin{array}{l}4x + \pi = 2x + \frac{{4\pi }}{3} + k2\pi \\4x + \pi = - \left( {2x + \frac{{4\pi }}{3}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{3} + k2\pi \\6x = - \frac{{7\pi }}{3} + k2\pi \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x = - \frac{{7\pi }}{{18}} + k\frac{\pi }{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x = - \frac{\pi }{{18}} + k\frac{\pi }{3}\end{array} \right.\)\(\left( {k \in \mathbb{Z}} \right)\)
e) Ta có \(\frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right) = \sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4} = \sin \left( {x + \frac{\pi }{4}} \right)\).
Do đó, \(\cos x + \sin x = 0 \Leftrightarrow \frac{1}{{\sqrt 2 }}\left( {\cos x + \sin x} \right) = 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 0\)
\( \Leftrightarrow x + \frac{\pi }{4} = k\pi \Leftrightarrow x = - \frac{\pi }{4} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
f) Nếu \(\cos x = 0\) thì \(\sin x = 0\). Điều này là vô lí, do \({\sin ^2}x + {\cos ^2}x = 1\).
Như vậy \(\cos x \ne 0\). Phương trình trở thành:
\(\sin x = \sqrt 3 \cos x \Leftrightarrow \frac{{\sin x}}{{\cos x}} = \sqrt 3 \Leftrightarrow \tan x = \sqrt 3 \)
Ta có \(\tan \frac{\pi }{3} = \sqrt 3 \). Phương trình trở thành \(\tan x = \tan \frac{\pi }{3} \Leftrightarrow x = \frac{\pi }{3} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
Chuyên đề 2. Tìm hiểu ngôn ngữ trong đời sống xã hội hiện đại
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Phần hai: Giáo dục pháp luật
CHƯƠNG 9: ANĐEHIT - XETON - AXIT CACBOXYLIC
Bài 7: Tiết 1: EU - Liên minh khu vực lớn trên thế giới - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11