1. Nội dung câu hỏi
Cho tứ diện \(ABCD\). Trên các cạnh \(AC,{\rm{ }}CD\) lần lượt lấy các điểm \(E,{\rm{ }}F\) sao cho \(CE = 3EA,{\rm{ }}DF = 2FC\).
a) Xác định giao tuyến của mặt phẳng \(\left( {BEF} \right)\) với các mặt phẳng \(\left( {ABC} \right)\), \(\left( {ACD} \right)\), \(\left( {BCD} \right)\).
b) Xác định giao điểm \(K\) của đường thẳng \(AD\) với mặt phẳng \(\left( {BEF} \right)\).
c) Xác định giao tuyến của hai mặt phẳng \(\left( {BEF} \right)\) và \(\left( {ABD} \right)\).
2. Phương pháp giải
a) Để xác định giao tuyến của hai mặt phẳng, ta cần tìm hai điểm chung của hai mặt phẳng đó.
b) Để xác định giao điểm của đường thẳng \(AD\) với mặt phẳng \(\left( {BEF} \right)\), cần chọn 1 đường thẳng trong mặt phẳng \(\left( {BEF} \right)\), và tìm giao điểm của đường thẳng đó với đường thẳng \(AD\).
c) Để xác định giao tuyến của hai mặt phẳng, ta cần tìm hai điểm chung của hai mặt phẳng đó.
3. Lời giải chi tiết
a)
Giao tuyến của \(\left( {BEF} \right)\) và \(\left( {ABC} \right)\):
Ta có \(B \in \left( {BEF} \right) \cap \left( {ABC} \right)\).
Mặt khác, ta có \(\left\{ \begin{array}{l}E \in \left( {BEF} \right)\\E \in AC \subset \left( {ABC} \right)\end{array} \right. \Rightarrow E \in \left( {BEF} \right) \cap \left( {ABC} \right)\).
Như vậy giao tuyển của \(\left( {BEF} \right)\) và \(\left( {ABC} \right)\) là đường thẳng \(BE\).
Giao tuyến của \(\left( {BEF} \right)\) và \(\left( {ACD} \right)\):
Ta có \(\left\{ \begin{array}{l}F \in \left( {BEF} \right)\\F \in CD \subset \left( {ACD} \right)\end{array} \right. \Rightarrow F \in \left( {BEF} \right) \cap \left( {ACD} \right)\).
Mặt khác, \(\left\{ \begin{array}{l}E \in \left( {BEF} \right)\\E \in AC \subset \left( {ACD} \right)\end{array} \right. \Rightarrow E \in \left( {BEF} \right) \cap \left( {ACD} \right)\).
Như vậy giao tuyển của \(\left( {BEF} \right)\) và \(\left( {ACD} \right)\) là đường thẳng \(EF\).
Giao tuyến của \(\left( {BEF} \right)\) và \(\left( {BCD} \right)\):
Ta có \(B \in \left( {BEF} \right) \cap \left( {BCD} \right)\)
Mặt khác, \(\left\{ \begin{array}{l}F \in \left( {BEF} \right)\\F \in CD \subset \left( {BCD} \right)\end{array} \right. \Rightarrow F \in \left( {BEF} \right) \cap \left( {BCD} \right)\)
Như vậy giao tuyển của \(\left( {BEF} \right)\) và \(\left( {BCD} \right)\) là đường thẳng \(BF\).
b) Trên mặt phẳng \(\left( {ACD} \right)\), lấy \(K\) là giao điểm của \(AD\) và \(EF\).
Ta có \(\left\{ K \right\} = AD \cap EF\), mà \(EF \subset \left( {BEF} \right)\).
Suy ra \(\left\{ K \right\} = AD \cap \left( {BEF} \right)\), tức \(K\) là giao điểm của \(AD\) và \(\left( {BEF} \right)\).
c) Ta có \(B \in \left( {BEF} \right) \cap \left( {ABD} \right)\).
Theo câu b, ta có \(K \in AD \cap \left( {BEF} \right) \Rightarrow \left\{ \begin{array}{l}K \in AD\\K \in \left( {BEF} \right)\end{array} \right.\)
Mà \(AD \in \left( {ABD} \right)\) nên ta suy ra \(\left\{ \begin{array}{l}K \in \left( {ABD} \right)\\K \in \left( {BEF} \right)\end{array} \right. \Rightarrow K \in \left( {ABD} \right) \cap \left( {BEF} \right)\).
Vậy giao tuyến của hai mặt phẳng \(\left( {BEF} \right)\) và \(\left( {ABD} \right)\) là đường thẳng \(BK\).
Nghị luận xã hội lớp 11
Chủ đề 3. Thực hiện các hoạt động xây dựng và phát triển nhà trường
Unit 2: Get well
Bài 4: Đơn chất nitrogen
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Vật lí lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11