SBT Toán 11 - Chân trời sáng tạo tập 1

Câu hỏi 6 - Mục Bài tập trang 90

1. Nội dung câu hỏi

Xét tính liên tục của các hàm số sau:

a) \(f\left( x \right) = \frac{{\tan x}}{{\sqrt {1 - {x^2}} }}\);

b) \(f\left( x \right) = \frac{1}{{\sin x}}\).


2. Phương pháp giải

Sử dụng kiến thức về tính liên tục của hàm số sơ cấp để xét tính liên tục các hàm số:

+ Hàm số căn thức \(y = \sqrt {P\left( x \right)} \), hàm số lượng giác \(y = \tan x\) liên tục trên các khoảng của tập xác định của chúng (với P(x) là đa thức).

+ Hàm số phân thức \(y = \frac{{P\left( x \right)}}{{Q\left( x \right)}}\) liên tục trên các khoảng của tập xác định của chúng (với P(x) và Q(x) là đa thức).

 

3. Lời giải chi tiết 

a) Điều kiện: \(1 - {x^2} > 0 \Leftrightarrow  - 1 < x < 1\). Hàm số \(y = \sqrt {1 - {x^2}} \) xác định và liên tục trên \(\left( { - 1;1} \right)\). Do \(\left( { - 1;1} \right) \subset \left( {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right)\) nên hàm số \(y = \tan x\) xác định và liên tục trên \(\left( { - 1;1} \right)\).

Vậy hàm số \(f\left( x \right) = \frac{{\tan x}}{{\sqrt {1 - {x^2}} }}\) liên tục trên \(\left( { - 1;1} \right)\).

b) Hàm số \(f\left( x \right) = \frac{1}{{\sin x}}\) xác định khi \(\sin x \ne 0 \Leftrightarrow x \ne k\pi \left( {k \in \mathbb{Z}} \right)\).

Do đó, hàm số \(f\left( x \right) = \frac{1}{{\sin x}}\) liên tục trên các khoảng \(\left( {k\pi ;\left( {k + 1} \right)\pi } \right)\) với k là số nguyên.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved