Đề bài
Trong mặt phẳng, cho đa giác\({A_1}{A_2}{A_3}...{A_n}\) có n cạnh \((n \ge 3)\). Gọi \({S_n}\) là tổng số đo các góc trong của đa giác.
a) Tính \({S_3},{S_4},{S_5}\) tương ứng với trường hợp đa giác là tam giác, tứ giác, ngũ giác.
b) Từ đó, dự đoán công thức tính \({S_n}\) và chứng minh công thức đó bằng phương pháp quy nạp toán học.
Lời giải chi tiết
a)
\(\begin{array}{l}{S_3} = {180^ \circ }\\{S_4} = {180^ \circ } + {180^ \circ } = {2.180^ \circ }\\{S_5} = {2.180^ \circ } + {180^ \circ } = {3.180^ \circ }\end{array}\)
b) Dự đoán \({S_n} = (n - 2){.180^ \circ }\) với mọi \(n \ge 3\).
Ta chứng minh công thức bằng phương pháp quy nạp
Với \(n = 3\) ta có \({S_3} = {180^ \circ }\)
Vậy công thức đúng với \(n = 3\)
Giả sử công thức đúng với \(n = k\) nghĩa là có \({S_k} = (k - 2){.180^ \circ }\)
Ta chứng minh công thức đúng với \(n = k + 1\) tức là chứng minh \({S_{k + 1}} = (k - 1){.180^ \circ }\)
Thật vậy, ta có
Xét đa giác k+1 cạnh: \({A_1}{A_2}{A_3}...{A_k}{A_{k + 1}}\). Kẻ đường chéo \({A_1}{A_k}\), chia đa giác này thành đa giác \({A_1}{A_2}{A_3}...{A_k}\) k cạnh và tam giác \({A_1}{A_k}{A_{k + 1}}\). Khi đó tổng các góc trong của đa giác k+1 cạnh \({A_1}{A_2}{A_3}...{A_k}{A_{k + 1}}\) bằng tổng các góc trong cả đa giác k cạnh \({A_1}{A_2}{A_3}...{A_k}\) và tam giác \({A_1}{A_k}{A_{k + 1}}\)
Do đó: \({S_{k + 1}} = {S_k} + {S_3} = (k - 2){.180^ \circ } + {180^ \circ } = (k - 1){.180^ \circ }\)
Vậy công thức đúng với mọi số tự nhiên \(n \ge 3\).
Phần 1. Một số vấn đề chung
Hello!
Chủ đề 11: Lập kế hoạch học tập, rèn luyện theo định hướng nghề nghiệp
Chuyên đề 1. Công nghệ tế bào và một số thành tự
Chương 9. Biến dạng của vật rắn
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10