Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Rút gọn các biểu thức:
LG câu a
LG câu a
\(\left( {2\sqrt 3 + \sqrt 5 } \right)\sqrt 3 - \sqrt {60} \);
Phương pháp giải:
Áp dụng:
+) \(\sqrt {{A^2}} = \left| A \right|\)
Với \(A \ge 0\) thì ta có \(\left| A \right| = A\)
Với \(A < 0\) thì ta có \(\left| A \right| = -A\)
+) Với \(B\ge 0\) ta có \(\sqrt {{A^2}B} = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)
+) \(\sqrt {A.B} = \sqrt A .\sqrt B \,\,\left( {A \ge 0;B \ge 0} \right)\)
Lời giải chi tiết:
\(\eqalign{
& \left( {2\sqrt 3 + \sqrt 5 } \right)\sqrt 3 - \sqrt {60} \cr &= 2\sqrt 3 .\sqrt 3 + \sqrt 5 .\sqrt 3 - \sqrt {60} \cr
& = 2\sqrt {{3^2}} + \sqrt {15} - \sqrt {4.15} \cr
& = 2.3 + \sqrt {15} - 2\sqrt {15} = 6 - \sqrt {15}\cr } \)
LG câu b
LG câu b
\(\left( {5\sqrt 2 + 2\sqrt 5 } \right)\sqrt 5 - \sqrt {250} \);
Phương pháp giải:
Áp dụng:
+) \(\sqrt {{A^2}} = \left| A \right|\)
Với \(A \ge 0\) thì ta có \(\left| A \right| = A\)
Với \(A < 0\) thì ta có \(\left| A \right| = -A\)
+) Với \(B\ge 0\) ta có \(\sqrt {{A^2}B} = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)
+) \(\sqrt {A.B} = \sqrt A .\sqrt B \,\,\left( {A \ge 0;B \ge 0} \right)\)
Lời giải chi tiết:
\(\eqalign{
& \left( {5\sqrt 2 + 2\sqrt 5 } \right)\sqrt 5 - \sqrt {250} \cr
&= 5\sqrt 2 .\sqrt 5 + 2\sqrt 5 .\sqrt 5 - \sqrt {250}\cr
& = 5\sqrt {10} + 2\sqrt {{5^2}} - \sqrt {25.10} \cr
&= 5\sqrt {10} + 2.5 - 5\sqrt {10} = 10\cr} \)
LG câu c
LG câu c
\(\left( {\sqrt {28} - \sqrt {12} - \sqrt 7 } \right)\sqrt 7 + 2\sqrt {21} \);
Phương pháp giải:
Áp dụng:
+) \(\sqrt {{A^2}} = \left| A \right|\)
Với \(A \ge 0\) thì ta có \(\left| A \right| = A\)
Với \(A < 0\) thì ta có \(\left| A \right| = -A\)
+) Với \(B\ge 0\) ta có \(\sqrt {{A^2}B} = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)
+) \(\sqrt {A.B} = \sqrt A .\sqrt B \,\,\left( {A \ge 0;B \ge 0} \right)\)
Lời giải chi tiết:
\( \left( {\sqrt {28} - \sqrt {12} - \sqrt 7 } \right)\sqrt 7 + 2\sqrt {21} \)
\( = \left( {\sqrt {4.7} - \sqrt {4.3} - \sqrt 7 } \right)\sqrt 7 + 2\sqrt {21} \)
\( = \left( {2\sqrt 7 - 2\sqrt 3 - \sqrt 7 } \right)\sqrt 7 + 2\sqrt {21} \)
\( = 2\sqrt {{7^2}} - 2\sqrt {21} - \sqrt {{7^2}} + 2\sqrt {21} \)
\( =2.7-7= 14 - 7 = 7\)
LG câu d
LG câu d
\(\left( {\sqrt {99} - \sqrt {18} - \sqrt {11} } \right)\sqrt {11} + 3\sqrt {22} \).
Phương pháp giải:
Áp dụng:
+) \(\sqrt {{A^2}} = \left| A \right|\)
Với \(A \ge 0\) thì ta có \(\left| A \right| = A\)
Với \(A < 0\) thì ta có \(\left| A \right| = -A\)
+) Với \(B\ge 0\) ta có \(\sqrt {{A^2}B} = \left\{ \begin{array}{l}
A\sqrt B \,\,khi\,\,A \ge 0\\
- A\sqrt B \,\,khi\,\,A < 0
\end{array} \right.\)
+) \(\sqrt {A.B} = \sqrt A .\sqrt B \,\,\left( {A \ge 0;B \ge 0} \right)\)
Lời giải chi tiết:
\(\eqalign{
& \left( {\sqrt {99} - \sqrt {18} - \sqrt {11} } \right)\sqrt {11} + 3\sqrt {22} \cr
& = \left( {\sqrt {9.11} - \sqrt {9.2} - \sqrt {11} } \right)\sqrt {11} + 3\sqrt {22} \cr} \)
\( = \left( {3\sqrt {11} - 3\sqrt 2 - \sqrt {11} } \right)\sqrt {11} + 3\sqrt {22} \)
\( = 3\sqrt {{{11}^2}} - 3\sqrt {22} - \sqrt {{{11}^2}} + 3\sqrt {22} \)
\( =3.11-11= 33 - 11 = 22\)
PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1
Đề kiểm tra 15 phút - Chương 1 - Sinh 9
Đề thi vào 10 môn Văn Khánh Hòa
Bài 1: Chí công vô tư
Bài 39. Phát triển tổng hợp kinh tế và bảo vệ tài nguyên, môi trường Biển - Đảo (tiếp theo)