PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

Bài 56 trang 98 SBT toán 8 tập 2

Đề bài

Hai điểm \(M\) và \(K\) thứ tự nằm trên cạnh \(AB\) và \(BC\) của tam giác \(ABC\); hai đoạn thẳng \(AK\) và \(CM\) cắt nhau tại điểm \(P.\) Biết rằng \(AP = 2 PK\) và \(CP = 2PM.\)

Chứng minh rằng \(AK\) và \(CM\) là các trung tuyến của tam giác \(ABC.\)

Phương pháp giải - Xem chi tiết

Sử dụng:

- Nếu hai cạnh tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đồng dạng.

- Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

- Một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại tạo thành một tam giác đồng dạng với tam giác đã cho.

Lời giải chi tiết

 

\(AP = 2 PK\) và \(CP = 2PM\) (gt)

\( \Rightarrow \displaystyle{{PK} \over {PA}} = {1 \over 2};{{PM} \over {PC}} = {1 \over 2}\)

\( \Rightarrow\displaystyle {{PK} \over {PA}} = {{PM} \over {PC}} = {1 \over 2}\)

Xét \(∆ PKM\) và \(∆ PAC\) có:

\(\displaystyle {{PK} \over {PA}} = {{PM} \over {PC}}\) (chứng minh trên)

\(\widehat {APC} = \widehat {KPM}\) (đối đỉnh)

\( \Rightarrow ∆ PKM\) đồng dạng \(∆ PAC\) (c.g.c) với tỉ số đồng dạng \(k =\displaystyle {{PK} \over {PA}}= {1 \over 2}\).

\( \Rightarrow\displaystyle {{KM} \over {AC}} = {1 \over 2}\)                          (1)

Vì \(∆ PKM\) đồng dạng \(∆ PAC\) suy ra \(\widehat {PKM} = \widehat {PAC}\)

Mà \(\widehat {PKM} \) và \( \widehat {PAC}\) ở vị trí so le trong nên \( KM // AC\) (vì có cặp góc ở vị trí so le trong bằng nhau).

Trong tam giác \(ABC\) có \(KM // AC\) nên \(\widehat {BMK} = \widehat {BAC}\) (hai góc đồng vị)

Lại có góc \(B\) chung nên \( ∆ BMK\) đồng dạng \(∆ BAC\) (g.g)

\( \Rightarrow\displaystyle  {{BM} \over {BA}} = {{BK} \over {BC}} = {{MK} \over {AC}}\)     (2)

Từ (1) và (2) suy ra: \(\displaystyle {{BM} \over {BA}} = {{BK} \over {BC}} = {1 \over 2}\)

Do đó \(BM = \displaystyle {1 \over 2} BA\) nên \(M\) là trung điểm của \(AB\).

\(BK =\displaystyle  {1 \over 2} BC\) nên \(K\) là trung điểm của \(BC\).

Vậy \(AK\) và \(CM\) là đường trung tuyến của tam giác \(ABC.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved