1. Nội dung câu hỏi
Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 1\), \({u_2} = 2\), \({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 2\) với \(n \ge 2\).
a) Viết năm số hạng đầu của dãy số.
b) Đặt \({v_n} = {u_{n + 1}} - {u_n}\) với \(n \in {\mathbb{N}^*}\). Chứng minh rằng dãy số \(\left( {{v_n}} \right)\) là cấp số cộng.
c) Tìm công thức của \({v_n}\), \({u_n}\) tính theo \(n\).
2. Phương pháp giải
a) Thay \(n = 2\), \(n = 3\), \(n = 4\) vào biểu thức \({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 2\) để tính \({u_3},{u_4},{u_5}\).
b) Do \({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 2 \Rightarrow {u_{n + 1}} - {u_n} = {u_n} - {u_{n - 1}} + 2 \Rightarrow {v_n} = {v_{n - 1}} + 2\). Suy ra \(\left( {{v_n}} \right)\) là cấp số cộng.
c) Do \(\left( {{v_n}} \right)\) là cấp số cộng nên \({v_n} = {v_1} + \left( {n - 1} \right)d\).
Ta có \({v_1} = {u_2} - {u_1}\), \({v_2} = {u_3} - {u_2}\), \({v_3} = {u_4} - {u_3}\),…, \({v_{n - 1}} = {u_n} - {u_{n - 1}}\)
Do đó \({v_1} + {v_2} + {v_3} + .... + {v_{n - 1}} = - {u_1} + {u_n}\)
Từ đó ta tính được công thức số hạng tổng quát của \(\left( {{u_n}} \right)\)
3. Lời giải chi tiết
a) Ta có
\({u_3} = 2{u_2} - {u_1} + 2 = 2.2 - 1 + 2 = 5\)
\({u_4} = 2{u_3} - {u_2} + 2 = 2.5 - 2 + 2 = 10\)
\({u_5} = 2{u_4} - {u_3} + 2 = 2.10 - 5 + 2 = 17\)
Vậy năm số hạng đầu của dãy số là 1, 2, 5, 10, 17.
b) Do \({u_{n + 1}} = 2{u_n} - {u_{n - 1}} + 2 \Rightarrow {u_{n + 1}} - {u_n} = {u_n} - {u_{n - 1}} + 2\)
Mà \({v_n} = {u_n} - {u_{n - 1}}\), ta suy ra \({v_n} = {v_{n - 1}} + 2 \Rightarrow {v_n} - {v_{n - 1}} = 2\)
Dãy số \(\left( {{v_n}} \right)\) có \({v_n} - {v_{n - 1}} = 2\) là một hằng số, nên \(\left( {{v_n}} \right)\) là cấp số cộng có số hạng đầu \({v_1} = {u_2} - {u_1} = 2 - 1 = 1\), công sai \(d = 2\).
c) Do \(\left( {{v_n}} \right)\) là cấp số cộng, nên \({v_n} = {v_1} + \left( {n - 1} \right)d = 1 + 2\left( {n - 1} \right) = 2n - 1\)
Ta có \({v_1} = {u_2} - {u_1}\), \({v_2} = {u_3} - {u_2}\), \({v_3} = {u_4} - {u_3}\),…, \({v_{n - 1}} = {u_n} - {u_{n - 1}}\)
Do đó \({v_1} + {v_2} + {v_3} + .... + {v_{n - 1}} = - {u_1} + {u_n}\)
Suy ra \({u_n} = \frac{{\left( {2v{\rm{\_1 + }}\left( {n - 2} \right)d} \right)\left( {n - 1} \right)}}{2} + 1 = {\left( {n - 1} \right)^2} + 1\).
CHƯƠNG VII - MẮT. CÁC DỤNG CỤ QUANG
Unit 8: Independent Life
SGK Toán 11 - Chân trời sáng tạo tập 2
CHƯƠNG IV. TỪ TRƯỜNG
Skills (Units 3 - 4)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11