ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 5.6 trang 198 SBT đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Viết phương trình tiếp tuyến của đồ thị của các hàm số

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

\(y = {x^3} - 3{x^2} + 2\) tại điểm (-1; -2) 

Phương pháp giải:

Công thức phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)

Lời giải chi tiết:

Ta có:

\(f'\left( x \right) = 3{x^2} - 6x\)\( \Rightarrow f'\left( { - 1} \right) = 9\)

Phương trình tiếp tuyến tại điểm \(M\left( { - 1; - 2} \right)\) là:

\(y = f'\left( { - 1} \right)\left( {x + 1} \right) - 2\) \( \Leftrightarrow y = 9\left( {x + 1} \right) - 2\) \( \Leftrightarrow y = 9x + 7\)

LG b

\(y = {x^4} - 2{x^2}\) tại điểm có hoành độ x = -2

(Đề thi tốt nghiệp THPT 2008)

Lời giải chi tiết:

Ta có:

\(f'\left( x \right) = 4{x^3} - 4x\) \( \Rightarrow f'\left( { - 2} \right) = 4.{\left( { - 2} \right)^3} - 4.\left( { - 2} \right) \) \(=  - 24\)  

\(x =  - 2 \Rightarrow y = f\left( { - 2} \right) = 8\)

Phương trình tiếp tuyến tại điểm \(M\left( { - 2;8} \right)\) là:

\(y = f'\left( { - 2} \right)\left( {x + 2} \right) + 8\) \( =  - 24\left( {x + 2} \right) + 8 =  - 24x - 40\)

Vậy \(y =  - 24x - 40\).

LG c

\(y = {{2x + 1} \over {x - 2}}\) biết hệ số góc của tiếp tuyến bằng -5

(Đề thi tốt nghiệp THPT 2009)

Lời giải chi tiết:

Ta có: \(y' = f'\left( x \right) = \dfrac{{ - 5}}{{{{\left( {x - 2} \right)}^2}}}\)

Gọi điểm \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm, khi đó \(f'\left( {{x_0}} \right) = k =  - 5\)

\(\begin{array}{l} \Leftrightarrow \dfrac{{ - 5}}{{{{\left( {{x_0} - 2} \right)}^2}}} =  - 5\\ \Leftrightarrow {\left( {{x_0} - 2} \right)^2} = 1\\ \Leftrightarrow \left[ \begin{array}{l}{x_0} - 2 = 1\\{x_0} - 2 =  - 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3 \Rightarrow {y_0} = 7\\{x_0} = 1 \Rightarrow {y_0} =  - 3\end{array} \right.\end{array}\)

Tại điểm \(\left( {3;7} \right)\) ta có phương trình tiếp tuyến: \(y =  - 5\left( {x - 3} \right) + 7\) hay \(y =  - 5x + 22\)

Tại điểm \(\left( {1; - 3} \right)\) ta có phương trình tiếp tuyến: \(y =  - 5\left( {x - 1} \right) - 3\) hay \(y =  - 5x + 2\)

Vậy có hai tiếp tuyến cần tìm là \(y =  - 5x + 2;y =  - 5x + 22.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved