Đề bài
An và Bình cùng tính chu vi của hình tròn bán kính 2 cm với hai kết quả như sau:
Kết quả của An: \({S_1} = 2\pi R \approx 2.3,14.2 = 12,56\)cm;
Kết quả của Bình: \({S_2} = 2\pi R \approx 2.3,1.2 = 12,4\)cm.
Hỏi:
a) Hai giá trị tính được có phải là các số gần đúng không?
b) Giá trị nào chính xác hơn?
Phương pháp giải - Xem chi tiết
a) Chu vi của đường tròn luôn là số gần đúng.
b) Đánh giá sai số tuyệt đối
Lời giải chi tiết
a) Vì công thức chu vi đường tròn là \(2\pi R\) với R là độ dài bán kính, trong đó \(\pi \) là số không thể tính chính xác được mà chỉ có thể lấy số gần đúng nên hai giá trị tính được là số gần đúng.
b)
Kết quả của An: \({S_1} = 2\pi R \approx 2.3,14.2 = 12,56\) cm:
Kết quả của Bình: \({S_2} = 2\pi R \approx 2.3,1.2 = 12,4\)cm.
Ta thấy \(\pi > 3,14 > 3,1 => 2.\pi. R > {S_1} > {S_2}\)
\( = > \left| {2\pi R - {S_1}} \right| < \left| {2\pi R - {S_2}} \right|\)
Nói cách khác, sai số tuyệt đối của \(S_1\) nhỏ hơn \(S_2\).
=> Kết quả của An chính xác hơn.
Đề thi học kì 2
Chuyên đề 1. Cơ sở hóa học
Chuyên đề 3. Ba đường conic và ứng dụng
Chuyên đề 1: Hệ phương trình bậc nhất ba ẩn và ứng dụng
Đề thi học kì 2
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10