1. Nội dung câu hỏi
Cho dãy số \(\left( {{u_n}} \right)\) có tổng \(n\) số hạng đầu là\({S_n} = \frac{{n\left( { - 1 - 5n} \right)}}{2}\) với \(n \in {\mathbb{N}^*}\).
a) Tính \({u_1}\), \({u_2}\) và \({u_3}\).
b) Tìm công thức của số hạng tổng quát \({u_n}\).
c) Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng.
2. Phương pháp giải
a) Ta có \({S_n}\) là tổng \(n\) số hạng đầu tiên của dãy.
Với \(n = 1\) ta có \({S_1} = {u_1}\)
Với \(n = 2\) ta có \({S_2} = {u_1} + {u_2}\)
Với \(n = 3\) ta có \({S_3} = {u_1} + {u_2} + {u_3}\)
Giải hệ phương trình, ta tính được \({u_1}\), \({u_2}\) và \({u_3}\).
b) Sử dụng công thức \({u_n} = {S_n} - {S_{n - 1}}\)
c) Để chứng minh \(\left( {{u_n}} \right)\) là cấp số cộng, từ kết quả câu b, ta cần chứng minh \({u_n} - {u_{n - 1}}\) là hằng số.
3. Lời giải chi tiết
a, Ta có
\({S_1} = {u_1} \Rightarrow {u_1} = \frac{{1\left( { - 1 - 5.1} \right)}}{2} = - 3\)
\({S_2} = {u_1} + {u_2} = {S_1} + {u_2} \Rightarrow {u_2} = {S_2} - {S_1} = \frac{{2\left( { - 1 - 5.2} \right)}}{2} - \frac{{1\left( { - 1 - 5.1} \right)}}{2} = - 8\)
\({S_3} = {u_1} + {u_2} + {u_3} = {S_2} + {u_3} \Rightarrow {u_3} = {S_3} - {S_2} = \frac{{3\left( { - 1 - 5.3} \right)}}{3} - \frac{{2\left( { - 1 - 5.2} \right)}}{2} = - 13\)
Vậy ba số hạng đầu của dãy số là \( - 3\), \( - 8\), \( - 13\).
b) Ta có
\({S_n} = {u_1} + {u_2} + ... + {u_{n - 1}} + {u_n}\), \({S_{n - 1}} = {u_1} + {u_2} + ... + {u_{n - 1}}\)
\( \Rightarrow {u_n} = {S_n} - {S_{n - 1}} = \frac{{n\left( { - 1 - 5n} \right)}}{2} - \frac{{\left( {n - 1} \right)\left[ { - 1 - 5\left( {n - 1} \right)} \right]}}{2} = \frac{{n - 5{n^2}}}{2} - \frac{{\left( {n - 1} \right)\left( {4 - 5n} \right)}}{2}\)
\( = \frac{{n - 5{n^2} - \left( { - 4 + 5{n^2} + 9n} \right)}}{2} = \frac{{4 - 10n}}{2} = 2 - 5n\)
c) Xét \({u_n} - {u_{n - 1}} = \left( {2 - 5n} \right) - \left[ {2 - 5\left( {n - 1} \right)} \right] = \left( {2 - 5n} \right) - \left( {2 - 5n + 5} \right) = 5\).
Do \({u_n} - {u_{n - 1}} = 5\) là hằng số, dãy số \(\left( {{u_n}} \right)\) là cấp số cộng.
SBT Toán 11 - Cánh Diều tập 2
Tải 10 đề kiểm tra 15 phút - Chương IV - Hóa học 11
Unit 6: Competitions - Những cuộc thi
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
Chương 3: Đại cương hóa học hữu cơ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11