1. Nội dung câu hỏi
Phương trình \(\sin x - \cos x = 0\) có các nghiệm là:
A. \(x = \frac{\pi }{4} + k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
B. \(x = - \frac{\pi }{4} + k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
C. \(x = \frac{\pi }{4} + k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
D. \(x = - \frac{\pi }{4} + k2\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right)\)
2. Phương pháp giải
Sử dụng công thức \(\sin \left( {x - \frac{\pi }{4}} \right) = \sin x\cos \frac{\pi }{4} - \sin \frac{\pi }{4}\cos x = \frac{1}{{\sqrt 2 }}\left( {\sin x - \cos x} \right)\)
Sử dụng kết quả \(\sin x = 0 \Leftrightarrow x = k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
3. Lời giải chi tiết
Ta có:
\(\sin x - \cos x = 0 \Leftrightarrow \frac{1}{{\sqrt 2 }}\left( {\sin x - \cos x} \right) = 0 \Leftrightarrow \sin x\cos \frac{\pi }{4} - \sin \frac{\pi }{4}\cos x = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{4}} \right) = 0\)
\( \Leftrightarrow x - \frac{\pi }{4} = k\pi \Leftrightarrow x = \frac{\pi }{4} + k\pi \)\(\left( {k \in \mathbb{Z}} \right)\)
Đáp án đúng là A.
Chuyên đề 3. Cuộc cách mạng công nghiệp lần thứ tư (4.0)
CHƯƠNG 9: ANĐEHIT - XETON - AXIT CACBOXYLIC
HÌNH HỌC SBT - TOÁN 11
Bài 19: Carboxylic acid
Unit 8: Cties
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11