Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề bài
Tìm một số có hai chữ số biết rằng \(2\) lần chữ số hàng chục lớn hơn \(5\) lần chữ số hàng đơn vị là \(1\) và chữ số hàng chục chia cho chữ số hàng đơn vị được thương là \(2\) và dư cũng là \(2.\)
Phương pháp giải - Xem chi tiết
Sử dụng:
- Cách giải bài toán bằng cách lập hệ hai phương trình bậc nhất hai ẩn :
Bước \(1\): Lập hệ phương trình
+ Chọn hai ẩn và đặt điều kiện thích hợp cho chúng
+ Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết
+ Lập hai phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước \(2\): Giải hệ phương trình nói trên.
Bước \(3\): Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.
- Nếu \(a\) chia \(b\) được thương là \(q\), số dư là \(r\) thì ta có biểu diễn: \(a=b.q+r\)
Lời giải chi tiết
Gọi chữ số hàng chục là \(x\), chữ số hàng đơn vị là \(y\).
Điều kiện: \(x,y \in {\mathbb{N}^*};0 < x ≤ 9; 0 < y ≤ 9\)
Hai lần chữ số hàng chục lớn hơn năm lần chữ số hàng đơn vị là \(1\) nên ta có phương trình: \(2x – 5y = 1\)
Chữ số hàng chục chia cho chữ số hàng đơn vị được thương là \(2\) và dư là \(2\) nên ta có phương trình:
\(x = 2y + 2\)
Khi đó ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{2x - 5y = 1} \cr
{x = 2y + 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x - 5y = 1} \cr
{2x - 4y = 4} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = 3} \cr
{x = 2y + 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = 3} \cr
{x = 2.3 + 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 3} \cr
{x = 8} \cr} } \right. \cr} \)
Ta thấy \(x = 8; y = 3\) thỏa mãn điều kiện bài toán.
Vậy số cần tìm là \(83\).
Bài 4
Đề kiểm tra 15 phút - Chương 9 - Sinh 9
Đề kiểm tra 15 phút - Chương 8 - Sinh 9
PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2
PHẦN SINH VẬT VÀ MÔI TRƯỜNG