1. Nội dung câu hỏi
Cho hàm số \(f(x)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 2\) và \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = m + 1\). Biết giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại. Giá trị của m là
A. \(m = 1\)
B. \(m = 2\)
C. \(m = 3\)
D. Không tồn tại m.
2. Phương pháp giải
Dựa vào lý thuyết \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\) để tính ra m.
3. Lời giải chi tiết
Đáp án A.
Giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1_{}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\).
Nên \(2 = m + 1 \Rightarrow m = 1.\)
Review (Units 3 - 4)
Chủ đề 3. Các phương pháp gia công cơ khí
Chương 4: Hydrocarbon
Tải 20 đề kiểm tra 15 phút - Chương 4
CHƯƠNG VI: KHÚC XẠ ÁNH SÁNG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11