1. Nội dung câu hỏi
Cho \(L = \mathop {\lim }\limits_{n \to + \infty } \left( {{n^3} - 2{n^2} + 1} \right)\). Giá trị của L là
A. \(L = 0\)
B. \(L = - \infty \)
C. \(L = + \infty \)
D.\(L = 0\).
2. Phương pháp giải
Nhóm số hạng có số mũ lớn nhất ra ngoài. Áp dụng các quy tắc tính giới hạn để biến đổi và tính toán. (Nếu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \) và \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = a > 0\) thì \(\mathop {\lim }\limits_{n \to + \infty } {u_n}{v_n} = + \infty \)).
3. Lời giải chi tiết
Đáp án C
\(L = \mathop {\lim }\limits_{n \to + \infty } \left( {{n^3} - 2{n^2} + 1} \right) = \mathop {\lim }\limits_{n \to + \infty } {n^3}\left( {1 - \frac{2}{n} + \frac{1}{{{n^3}}}} \right) = + \infty \).
Chuyên đề III. Một số yếu tố vẽ kĩ thuật
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Toán lớp 11
SBT Ngữ văn 11 - Cánh Diều tập 2
Chương IV. Phòng, trị bệnh cho vật nuôi
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11