Giải các bất phương trình
LG a
\(f'\left( x \right) > 0\) với \(f\left( x \right) = {1 \over 7}{x^7} - {9 \over 4}{x^4} + 8x - 3\)
Lời giải chi tiết:
Ta có:
\(f'\left( x \right) = \dfrac{1}{7}.7{x^6} - \dfrac{9}{4}.4{x^3} + 8\) \( = {x^6} - 9{x^3} + 8\)
\(f'\left( x \right) > 0\) \( \Leftrightarrow {x^6} - 9{x^3} + 8 > 0\) \( \Leftrightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 8} \right) > 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{x^3} > 8\\{x^3} < 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right.\)
Vậy x < 1 hoặc x > 2
LG b
\(g'\left( x \right) \le 0\) với \(g\left( x \right) = {{{x^2} - 5x + 4} \over {x - 2}}\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}g'\left( x \right)\\ = \dfrac{{\left( {{x^2} - 5x + 4} \right)'\left( {x - 2} \right) - \left( {{x^2} - 5x + 4} \right)\left( {x - 2} \right)'}}{{{{\left( {x - 2} \right)}^2}}}\\ = \dfrac{{\left( {2x - 5} \right)\left( {x - 2} \right) - \left( {{x^2} - 5x + 4} \right)}}{{{{\left( {x - 2} \right)}^2}}}\\ = \dfrac{{2{x^2} - 5x - 4x + 10 - {x^2} + 5x - 4}}{{{{\left( {x - 2} \right)}^2}}}\\ = \dfrac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}}\\g'\left( x \right) \le 0 \Leftrightarrow \dfrac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}} \le 0\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 4x + 6 \le 0\\{\left( {x - 2} \right)^2} \ne 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - 2} \right)^2} + 2 \le 0\left( {VN} \right)\\{\left( {x - 2} \right)^2} \ne 0\end{array} \right.\end{array}\)
Vậy bpt \(g'\left( x \right) \le 0\) vô nghiệm.
Tác giả - Tác phẩm Ngữ văn 11 tập 1
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
PHẦN MỘT. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (TIẾP THEO)
Phần một. Một số vấn đề về kinh tế - xã hội thế giới
Unit 6: Transitions
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11