Đề bài
Cho
\(\eqalign{
& f\left( x \right) = 2{x^3} - {x^2} + \sqrt 3 ; \cr
& g\left( x \right) = {x^3} + {{{x^2}} \over 2} - \sqrt 3 . \cr} \)
Giải bất phương trình \(f'(x) > g'\left( x \right).\)
Lời giải chi tiết
\(\begin{array}{l}
f'\left( x \right) = \left( {2{x^3} - {x^2} + \sqrt 3 } \right)'\\
= 2.3{x^2} - 2x + 0 = 6{x^2} - 2x\\
g'\left( x \right) = \left( {{x^3} + \frac{{{x^2}}}{2} - \sqrt 3 } \right)'\\
= 3.{x^2} + \frac{{2x}}{2} - 0 = 3{x^2} + x\\
f'\left( x \right) > g'\left( x \right) \Leftrightarrow 6{x^2} - 2x > 3{x^2} + x\\
\Leftrightarrow 3{x^2} - 3x > 0 \Leftrightarrow 3x\left( {x - 1} \right) > 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < 0
\end{array} \right.
\end{array}\)
Vậy \(S=\left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right).\)
Tiếng Anh 11 mới tập 2
Chuyên đề 2. Truyền thông tin bằng sóng vô tuyến
Chủ đề 4. Dòng điện, mạch điện
Review (Units 5-8)
Chủ đề 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11